Metamath Proof Explorer


Theorem liminfresuz2

Description: If the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresuz2.1
|- ( ph -> M e. ZZ )
liminfresuz2.2
|- Z = ( ZZ>= ` M )
liminfresuz2.3
|- ( ph -> F e. V )
liminfresuz2.4
|- ( ph -> dom F C_ ZZ )
Assertion liminfresuz2
|- ( ph -> ( liminf ` ( F |` Z ) ) = ( liminf ` F ) )

Proof

Step Hyp Ref Expression
1 liminfresuz2.1
 |-  ( ph -> M e. ZZ )
2 liminfresuz2.2
 |-  Z = ( ZZ>= ` M )
3 liminfresuz2.3
 |-  ( ph -> F e. V )
4 liminfresuz2.4
 |-  ( ph -> dom F C_ ZZ )
5 dmresss
 |-  dom ( F |` RR ) C_ dom F
6 5 a1i
 |-  ( ph -> dom ( F |` RR ) C_ dom F )
7 6 4 sstrd
 |-  ( ph -> dom ( F |` RR ) C_ ZZ )
8 1 2 3 7 liminfresuz
 |-  ( ph -> ( liminf ` ( F |` Z ) ) = ( liminf ` F ) )