Step |
Hyp |
Ref |
Expression |
1 |
|
liminfvalxrmpt.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
liminfvalxrmpt.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
liminfvalxrmpt.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
4 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
5 |
1 3
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ* ) |
6 |
4 2 5
|
liminfvalxr |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) ) |
7 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
8 |
7 3
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
9 |
8
|
xnegeqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → -𝑒 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = -𝑒 𝐵 ) |
10 |
1 9
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ -𝑒 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) ) |
12 |
11
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) ) |
13 |
6 12
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) ) |