Step |
Hyp |
Ref |
Expression |
1 |
|
liminfval4.x |
|- F/ x ph |
2 |
|
liminfval4.a |
|- ( ph -> A e. V ) |
3 |
|
liminfval4.m |
|- ( ph -> M e. RR ) |
4 |
|
liminfval4.b |
|- ( ( ph /\ x e. ( A i^i ( M [,) +oo ) ) ) -> B e. RR ) |
5 |
|
inss1 |
|- ( A i^i ( M [,) +oo ) ) C_ A |
6 |
5
|
a1i |
|- ( ph -> ( A i^i ( M [,) +oo ) ) C_ A ) |
7 |
2 6
|
ssexd |
|- ( ph -> ( A i^i ( M [,) +oo ) ) e. _V ) |
8 |
4
|
rexrd |
|- ( ( ph /\ x e. ( A i^i ( M [,) +oo ) ) ) -> B e. RR* ) |
9 |
1 7 8
|
liminfvalxrmpt |
|- ( ph -> ( liminf ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) = -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -e B ) ) ) |
10 |
4
|
rexnegd |
|- ( ( ph /\ x e. ( A i^i ( M [,) +oo ) ) ) -> -e B = -u B ) |
11 |
1 10
|
mpteq2da |
|- ( ph -> ( x e. ( A i^i ( M [,) +oo ) ) |-> -e B ) = ( x e. ( A i^i ( M [,) +oo ) ) |-> -u B ) ) |
12 |
11
|
fveq2d |
|- ( ph -> ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -e B ) ) = ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -u B ) ) ) |
13 |
12
|
xnegeqd |
|- ( ph -> -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -e B ) ) = -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -u B ) ) ) |
14 |
9 13
|
eqtrd |
|- ( ph -> ( liminf ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) = -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -u B ) ) ) |
15 |
|
eqid |
|- ( M [,) +oo ) = ( M [,) +oo ) |
16 |
3 15 2
|
liminfresicompt |
|- ( ph -> ( liminf ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) = ( liminf ` ( x e. A |-> B ) ) ) |
17 |
16
|
eqcomd |
|- ( ph -> ( liminf ` ( x e. A |-> B ) ) = ( liminf ` ( x e. ( A i^i ( M [,) +oo ) ) |-> B ) ) ) |
18 |
2 3 15
|
limsupresicompt |
|- ( ph -> ( limsup ` ( x e. A |-> -u B ) ) = ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -u B ) ) ) |
19 |
18
|
xnegeqd |
|- ( ph -> -e ( limsup ` ( x e. A |-> -u B ) ) = -e ( limsup ` ( x e. ( A i^i ( M [,) +oo ) ) |-> -u B ) ) ) |
20 |
14 17 19
|
3eqtr4d |
|- ( ph -> ( liminf ` ( x e. A |-> B ) ) = -e ( limsup ` ( x e. A |-> -u B ) ) ) |