Metamath Proof Explorer


Theorem climliminflimsup3

Description: A sequence of real numbers converges if and only if its inferior limit is real and equal to its superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminflimsup3.1 φ M
climliminflimsup3.2 Z = M
climliminflimsup3.3 φ F : Z
Assertion climliminflimsup3 φ F dom lim inf F lim inf F = lim sup F

Proof

Step Hyp Ref Expression
1 climliminflimsup3.1 φ M
2 climliminflimsup3.2 Z = M
3 climliminflimsup3.3 φ F : Z
4 1 2 3 climliminflimsup φ F dom lim inf F lim sup F lim inf F
5 3 frexr φ F : Z *
6 1 2 5 liminfgelimsupuz φ lim sup F lim inf F lim inf F = lim sup F
7 6 anbi2d φ lim inf F lim sup F lim inf F lim inf F lim inf F = lim sup F
8 4 7 bitrd φ F dom lim inf F lim inf F = lim sup F