Metamath Proof Explorer


Theorem climliminflimsup4

Description: A sequence of real numbers converges if and only if its superior limit is real and equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminflimsup4.1 φ M
climliminflimsup4.2 Z = M
climliminflimsup4.3 φ F : Z
Assertion climliminflimsup4 φ F dom lim sup F lim inf F = lim sup F

Proof

Step Hyp Ref Expression
1 climliminflimsup4.1 φ M
2 climliminflimsup4.2 Z = M
3 climliminflimsup4.3 φ F : Z
4 1 2 3 climliminflimsup2 φ F dom lim sup F lim sup F lim inf F
5 3 frexr φ F : Z *
6 1 2 5 liminfgelimsupuz φ lim sup F lim inf F lim inf F = lim sup F
7 6 anbi2d φ lim sup F lim sup F lim inf F lim sup F lim inf F = lim sup F
8 4 7 bitrd φ F dom lim sup F lim inf F = lim sup F