Metamath Proof Explorer


Theorem limsupub2

Description: A extended real valued function, with limsup that is not +oo , is eventually less than +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses limsupub2.1 j φ
limsupub2.2 _ j F
limsupub2.3 φ A
limsupub2.4 φ F : A *
limsupub2.5 φ lim sup F +∞
Assertion limsupub2 φ k j A k j F j < +∞

Proof

Step Hyp Ref Expression
1 limsupub2.1 j φ
2 limsupub2.2 _ j F
3 limsupub2.3 φ A
4 limsupub2.4 φ F : A *
5 limsupub2.5 φ lim sup F +∞
6 nfv j x
7 1 6 nfan j φ x
8 nfv j k
9 7 8 nfan j φ x k
10 4 ffvelrnda φ j A F j *
11 10 ad5ant14 φ x k j A F j x F j *
12 rexr x x *
13 12 ad4antlr φ x k j A F j x x *
14 pnfxr +∞ *
15 14 a1i φ x k j A F j x +∞ *
16 simpr φ x k j A F j x F j x
17 ltpnf x x < +∞
18 17 ad4antlr φ x k j A F j x x < +∞
19 11 13 15 16 18 xrlelttrd φ x k j A F j x F j < +∞
20 19 ex φ x k j A F j x F j < +∞
21 20 imim2d φ x k j A k j F j x k j F j < +∞
22 9 21 ralimdaa φ x k j A k j F j x j A k j F j < +∞
23 22 reximdva φ x k j A k j F j x k j A k j F j < +∞
24 23 imp φ x k j A k j F j x k j A k j F j < +∞
25 1 2 3 4 5 limsupub φ x k j A k j F j x
26 24 25 r19.29a φ k j A k j F j < +∞