Metamath Proof Explorer


Theorem limsupubuz2

Description: A sequence with values in the extended reals, and with limsup that is not +oo , is eventually less than +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses limsupubuz2.1 j φ
limsupubuz2.2 _ j F
limsupubuz2.3 φ M
limsupubuz2.4 Z = M
limsupubuz2.5 φ F : Z *
limsupubuz2.6 φ lim sup F +∞
Assertion limsupubuz2 φ k Z j k F j < +∞

Proof

Step Hyp Ref Expression
1 limsupubuz2.1 j φ
2 limsupubuz2.2 _ j F
3 limsupubuz2.3 φ M
4 limsupubuz2.4 Z = M
5 limsupubuz2.5 φ F : Z *
6 limsupubuz2.6 φ lim sup F +∞
7 4 uzssre2 Z
8 7 a1i φ Z
9 1 2 8 5 6 limsupub2 φ k j Z k j F j < +∞
10 4 rexuzre M k Z j k F j < +∞ k j Z k j F j < +∞
11 3 10 syl φ k Z j k F j < +∞ k j Z k j F j < +∞
12 9 11 mpbird φ k Z j k F j < +∞