Metamath Proof Explorer


Theorem limsupubuz2

Description: A sequence with values in the extended reals, and with limsup that is not +oo , is eventually less than +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses limsupubuz2.1 jφ
limsupubuz2.2 _jF
limsupubuz2.3 φM
limsupubuz2.4 Z=M
limsupubuz2.5 φF:Z*
limsupubuz2.6 φlim supF+∞
Assertion limsupubuz2 φkZjkFj<+∞

Proof

Step Hyp Ref Expression
1 limsupubuz2.1 jφ
2 limsupubuz2.2 _jF
3 limsupubuz2.3 φM
4 limsupubuz2.4 Z=M
5 limsupubuz2.5 φF:Z*
6 limsupubuz2.6 φlim supF+∞
7 4 uzssre2 Z
8 7 a1i φZ
9 1 2 8 5 6 limsupub2 φkjZkjFj<+∞
10 4 rexuzre MkZjkFj<+∞kjZkjFj<+∞
11 3 10 syl φkZjkFj<+∞kjZkjFj<+∞
12 9 11 mpbird φkZjkFj<+∞