| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limsupubuz2.1 |  |-  F/ j ph | 
						
							| 2 |  | limsupubuz2.2 |  |-  F/_ j F | 
						
							| 3 |  | limsupubuz2.3 |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | limsupubuz2.4 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | limsupubuz2.5 |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 6 |  | limsupubuz2.6 |  |-  ( ph -> ( limsup ` F ) =/= +oo ) | 
						
							| 7 | 4 | uzssre2 |  |-  Z C_ RR | 
						
							| 8 | 7 | a1i |  |-  ( ph -> Z C_ RR ) | 
						
							| 9 | 1 2 8 5 6 | limsupub2 |  |-  ( ph -> E. k e. RR A. j e. Z ( k <_ j -> ( F ` j ) < +oo ) ) | 
						
							| 10 | 4 | rexuzre |  |-  ( M e. ZZ -> ( E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo <-> E. k e. RR A. j e. Z ( k <_ j -> ( F ` j ) < +oo ) ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> ( E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo <-> E. k e. RR A. j e. Z ( k <_ j -> ( F ` j ) < +oo ) ) ) | 
						
							| 12 | 9 11 | mpbird |  |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo ) |