| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limsupubuz2.1 | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 2 |  | limsupubuz2.2 | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 3 |  | limsupubuz2.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | limsupubuz2.4 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | limsupubuz2.5 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 6 |  | limsupubuz2.6 | ⊢ ( 𝜑  →  ( lim sup ‘ 𝐹 )  ≠  +∞ ) | 
						
							| 7 | 4 | uzssre2 | ⊢ 𝑍  ⊆  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  𝑍  ⊆  ℝ ) | 
						
							| 9 | 1 2 8 5 6 | limsupub2 | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  𝑍 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) ) | 
						
							| 10 | 4 | rexuzre | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 )  <  +∞  ↔  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  𝑍 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 )  <  +∞  ↔  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  𝑍 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) ) ) | 
						
							| 12 | 9 11 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 )  <  +∞ ) |