Step |
Hyp |
Ref |
Expression |
1 |
|
xlimpnfxnegmnf.1 |
⊢ Ⅎ 𝑗 𝐹 |
2 |
|
xlimpnfxnegmnf.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
xlimpnfxnegmnf.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ↔ 𝑦 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
5 |
4
|
rexralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑦 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑖 ) ) |
7 |
6
|
raleqdv |
⊢ ( 𝑘 = 𝑖 → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑦 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑙 𝑦 ≤ ( 𝐹 ‘ 𝑗 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑦 |
10 |
|
nfcv |
⊢ Ⅎ 𝑗 ≤ |
11 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑙 |
12 |
1 11
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) |
13 |
9 10 12
|
nfbr |
⊢ Ⅎ 𝑗 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) |
14 |
|
fveq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑙 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑗 = 𝑙 → ( 𝑦 ≤ ( 𝐹 ‘ 𝑗 ) ↔ 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
16 |
8 13 15
|
cbvralw |
⊢ ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) |
17 |
7 16
|
bitrdi |
⊢ ( 𝑘 = 𝑖 → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑦 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
18 |
17
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑦 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) |
19 |
5 18
|
bitrdi |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
20 |
19
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
22 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ∧ 𝑤 ∈ ℝ ) → 𝜑 ) |
23 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) |
24 |
|
xnegrecl |
⊢ ( 𝑤 ∈ ℝ → -𝑒 𝑤 ∈ ℝ ) |
25 |
|
simpl |
⊢ ( ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ∧ 𝑤 ∈ ℝ ) → ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) |
26 |
|
breq1 |
⊢ ( 𝑦 = -𝑒 𝑤 → ( 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
27 |
26
|
rexralbidv |
⊢ ( 𝑦 = -𝑒 𝑤 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
28 |
27
|
rspcva |
⊢ ( ( -𝑒 𝑤 ∈ ℝ ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) ) |
29 |
24 25 28
|
syl2an2 |
⊢ ( ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ∧ 𝑤 ∈ ℝ ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) ) |
30 |
29
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ∧ 𝑤 ∈ ℝ ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) ) |
31 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝜑 ∧ 𝑤 ∈ ℝ ) ) |
32 |
2
|
uztrn2 |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑙 ∈ 𝑍 ) |
33 |
32
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑙 ∈ 𝑍 ) |
34 |
|
rexr |
⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℝ* ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ 𝑍 ) → 𝑤 ∈ ℝ* ) |
36 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑙 ) ∈ ℝ* ) |
37 |
36
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑙 ) ∈ ℝ* ) |
38 |
|
xlenegcon1 |
⊢ ( ( 𝑤 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑙 ) ∈ ℝ* ) → ( -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) ↔ -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ) |
39 |
35 37 38
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ 𝑍 ) → ( -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) ↔ -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ) |
40 |
39
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑙 ∈ 𝑍 ) → ( -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) → -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ) |
41 |
31 33 40
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) → -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ) |
42 |
41
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) → ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ) |
43 |
42
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ) |
44 |
43
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) ∧ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤 ≤ ( 𝐹 ‘ 𝑙 ) ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) |
45 |
22 23 30 44
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ∧ 𝑤 ∈ ℝ ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) |
46 |
45
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) → ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) |
47 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ∧ 𝑦 ∈ ℝ ) → 𝜑 ) |
48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
49 |
|
xnegrecl |
⊢ ( 𝑦 ∈ ℝ → -𝑒 𝑦 ∈ ℝ ) |
50 |
|
simpl |
⊢ ( ( ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ∧ 𝑦 ∈ ℝ ) → ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) |
51 |
|
breq2 |
⊢ ( 𝑤 = -𝑒 𝑦 → ( -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ↔ -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 ) ) |
52 |
51
|
rexralbidv |
⊢ ( 𝑤 = -𝑒 𝑦 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 ) ) |
53 |
52
|
rspcva |
⊢ ( ( -𝑒 𝑦 ∈ ℝ ∧ ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 ) |
54 |
49 50 53
|
syl2an2 |
⊢ ( ( ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ∧ 𝑦 ∈ ℝ ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 ) |
55 |
54
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 ) |
56 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝜑 ∧ 𝑦 ∈ ℝ ) ) |
57 |
32
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑙 ∈ 𝑍 ) |
58 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
59 |
58
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ 𝑍 ) → 𝑦 ∈ ℝ* ) |
60 |
36
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑙 ) ∈ ℝ* ) |
61 |
|
xleneg |
⊢ ( ( 𝑦 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑙 ) ∈ ℝ* ) → ( 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 ) ) |
62 |
59 60 61
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ 𝑍 ) → ( 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 ) ) |
63 |
62
|
biimprd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ 𝑍 ) → ( -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 → 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
64 |
56 57 63
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 → 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
65 |
64
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑖 ∈ 𝑍 ) → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 → ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
66 |
65
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
67 |
66
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ -𝑒 𝑦 ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) |
68 |
47 48 55 67
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) |
69 |
68
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) → ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) |
70 |
46 69
|
impbida |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ) ) |
71 |
|
breq2 |
⊢ ( 𝑤 = 𝑥 → ( -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ↔ -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
72 |
71
|
rexralbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
73 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑘 ) ) |
74 |
73
|
raleqdv |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
75 |
12
|
nfxneg |
⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑙 ) |
76 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
77 |
75 10 76
|
nfbr |
⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 |
78 |
|
nfv |
⊢ Ⅎ 𝑙 -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 |
79 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑗 ) ) |
80 |
79
|
xnegeqd |
⊢ ( 𝑙 = 𝑗 → -𝑒 ( 𝐹 ‘ 𝑙 ) = -𝑒 ( 𝐹 ‘ 𝑗 ) ) |
81 |
80
|
breq1d |
⊢ ( 𝑙 = 𝑗 → ( -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
82 |
77 78 81
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
83 |
74 82
|
bitrdi |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
84 |
83
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
85 |
72 84
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
86 |
85
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
87 |
86
|
a1i |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 ) ≤ 𝑤 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
88 |
21 70 87
|
3bitrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |