| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlimpnfxnegmnf.1 | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 2 |  | xlimpnfxnegmnf.2 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | xlimpnfxnegmnf.3 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  𝑦  ≤  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 5 | 4 | rexralbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( ℤ≥ ‘ 𝑘 )  =  ( ℤ≥ ‘ 𝑖 ) ) | 
						
							| 7 | 6 | raleqdv | ⊢ ( 𝑘  =  𝑖  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑙 𝑦  ≤  ( 𝐹 ‘ 𝑗 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑗 𝑦 | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑗  ≤ | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑗 𝑙 | 
						
							| 12 | 1 11 | nffv | ⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) | 
						
							| 13 | 9 10 12 | nfbr | ⊢ Ⅎ 𝑗 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑗  =  𝑙  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 15 | 14 | breq2d | ⊢ ( 𝑗  =  𝑙  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 16 | 8 13 15 | cbvralw | ⊢ ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 17 | 7 16 | bitrdi | ⊢ ( 𝑘  =  𝑖  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 18 | 17 | cbvrexvw | ⊢ ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 19 | 5 18 | bitrdi | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 20 | 19 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 22 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  ∧  𝑤  ∈  ℝ )  →  𝜑 ) | 
						
							| 23 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  ∧  𝑤  ∈  ℝ )  →  𝑤  ∈  ℝ ) | 
						
							| 24 |  | xnegrecl | ⊢ ( 𝑤  ∈  ℝ  →  -𝑒 𝑤  ∈  ℝ ) | 
						
							| 25 |  | simpl | ⊢ ( ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ∧  𝑤  ∈  ℝ )  →  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 26 |  | breq1 | ⊢ ( 𝑦  =  -𝑒 𝑤  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 27 | 26 | rexralbidv | ⊢ ( 𝑦  =  -𝑒 𝑤  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 28 | 27 | rspcva | ⊢ ( ( -𝑒 𝑤  ∈  ℝ  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 29 | 24 25 28 | syl2an2 | ⊢ ( ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ∧  𝑤  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 30 | 29 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  ∧  𝑤  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 31 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( 𝜑  ∧  𝑤  ∈  ℝ ) ) | 
						
							| 32 | 2 | uztrn2 | ⊢ ( ( 𝑖  ∈  𝑍  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑙  ∈  𝑍 ) | 
						
							| 33 | 32 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑙  ∈  𝑍 ) | 
						
							| 34 |  | rexr | ⊢ ( 𝑤  ∈  ℝ  →  𝑤  ∈  ℝ* ) | 
						
							| 35 | 34 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  𝑤  ∈  ℝ* ) | 
						
							| 36 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* ) | 
						
							| 37 | 36 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* ) | 
						
							| 38 |  | xlenegcon1 | ⊢ ( ( 𝑤  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* )  →  ( -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) ) | 
						
							| 39 | 35 37 38 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) ) | 
						
							| 40 | 39 | biimpd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  →  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) ) | 
						
							| 41 | 31 33 40 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  →  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) ) | 
						
							| 42 | 41 | ralimdva | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  →  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) ) | 
						
							| 43 | 42 | reximdva | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ )  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) ) | 
						
							| 44 | 43 | imp | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) | 
						
							| 45 | 22 23 30 44 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  ∧  𝑤  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) | 
						
							| 46 | 45 | ralrimiva | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  →  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) | 
						
							| 47 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  ∧  𝑦  ∈  ℝ )  →  𝜑 ) | 
						
							| 48 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ ) | 
						
							| 49 |  | xnegrecl | ⊢ ( 𝑦  ∈  ℝ  →  -𝑒 𝑦  ∈  ℝ ) | 
						
							| 50 |  | simpl | ⊢ ( ( ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ∧  𝑦  ∈  ℝ )  →  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) | 
						
							| 51 |  | breq2 | ⊢ ( 𝑤  =  -𝑒 𝑦  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) ) | 
						
							| 52 | 51 | rexralbidv | ⊢ ( 𝑤  =  -𝑒 𝑦  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) ) | 
						
							| 53 | 52 | rspcva | ⊢ ( ( -𝑒 𝑦  ∈  ℝ  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) | 
						
							| 54 | 49 50 53 | syl2an2 | ⊢ ( ( ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) | 
						
							| 55 | 54 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) | 
						
							| 56 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( 𝜑  ∧  𝑦  ∈  ℝ ) ) | 
						
							| 57 | 32 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑙  ∈  𝑍 ) | 
						
							| 58 |  | rexr | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℝ* ) | 
						
							| 59 | 58 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  𝑦  ∈  ℝ* ) | 
						
							| 60 | 36 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* ) | 
						
							| 61 |  | xleneg | ⊢ ( ( 𝑦  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* )  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) ) | 
						
							| 62 | 59 60 61 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) ) | 
						
							| 63 | 62 | biimprd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦  →  𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 64 | 56 57 63 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦  →  𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 65 | 64 | ralimdva | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦  →  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 66 | 65 | reximdva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) ) | 
						
							| 67 | 66 | imp | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 68 | 47 48 55 67 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 69 | 68 | ralrimiva | ⊢ ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  →  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 70 | 46 69 | impbida | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) ) | 
						
							| 71 |  | breq2 | ⊢ ( 𝑤  =  𝑥  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 72 | 71 | rexralbidv | ⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑖  =  𝑘  →  ( ℤ≥ ‘ 𝑖 )  =  ( ℤ≥ ‘ 𝑘 ) ) | 
						
							| 74 | 73 | raleqdv | ⊢ ( 𝑖  =  𝑘  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) ) | 
						
							| 75 | 12 | nfxneg | ⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑙 ) | 
						
							| 76 |  | nfcv | ⊢ Ⅎ 𝑗 𝑥 | 
						
							| 77 | 75 10 76 | nfbr | ⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥 | 
						
							| 78 |  | nfv | ⊢ Ⅎ 𝑙 -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 | 
						
							| 79 |  | fveq2 | ⊢ ( 𝑙  =  𝑗  →  ( 𝐹 ‘ 𝑙 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 80 | 79 | xnegeqd | ⊢ ( 𝑙  =  𝑗  →  -𝑒 ( 𝐹 ‘ 𝑙 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 81 | 80 | breq1d | ⊢ ( 𝑙  =  𝑗  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 82 | 77 78 81 | cbvralw | ⊢ ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 83 | 74 82 | bitrdi | ⊢ ( 𝑖  =  𝑘  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 84 | 83 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 85 | 72 84 | bitrdi | ⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 86 | 85 | cbvralvw | ⊢ ( ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 87 | 86 | a1i | ⊢ ( 𝜑  →  ( ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 88 | 21 70 87 | 3bitrd | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) |