Step |
Hyp |
Ref |
Expression |
1 |
|
liminflbuz2.1 |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
liminflbuz2.2 |
⊢ Ⅎ 𝑗 𝐹 |
3 |
|
liminflbuz2.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
liminflbuz2.4 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
5 |
|
liminflbuz2.5 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
6 |
|
liminflbuz2.6 |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ≠ -∞ ) |
7 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ∈ 𝑍 |
8 |
1 7
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) |
9 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝜑 ) |
10 |
4
|
uztrn2 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ 𝑍 ) |
11 |
10
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ 𝑍 ) |
12 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
14 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
15 |
14
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) → -∞ ∈ ℝ* ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) |
17 |
13 15 16
|
xrnltled |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ -∞ ) |
18 |
|
xlemnf |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑗 ) ≤ -∞ ↔ ( 𝐹 ‘ 𝑗 ) = -∞ ) ) |
19 |
13 18
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑗 ) ≤ -∞ ↔ ( 𝐹 ‘ 𝑗 ) = -∞ ) ) |
20 |
17 19
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) = -∞ ) |
21 |
|
xnegeq |
⊢ ( ( 𝐹 ‘ 𝑗 ) = -∞ → -𝑒 ( 𝐹 ‘ 𝑗 ) = -𝑒 -∞ ) |
22 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
23 |
21 22
|
eqtrdi |
⊢ ( ( 𝐹 ‘ 𝑗 ) = -∞ → -𝑒 ( 𝐹 ‘ 𝑗 ) = +∞ ) |
24 |
20 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) → -𝑒 ( 𝐹 ‘ 𝑗 ) = +∞ ) |
25 |
24
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) ∧ ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) → -𝑒 ( 𝐹 ‘ 𝑗 ) = +∞ ) |
26 |
|
neneq |
⊢ ( -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ → ¬ -𝑒 ( 𝐹 ‘ 𝑗 ) = +∞ ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) ∧ ¬ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ¬ -𝑒 ( 𝐹 ‘ 𝑗 ) = +∞ ) |
28 |
25 27
|
condan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) → -∞ < ( 𝐹 ‘ 𝑗 ) ) |
29 |
28
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ → -∞ < ( 𝐹 ‘ 𝑗 ) ) ) |
30 |
9 11 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ → -∞ < ( 𝐹 ‘ 𝑗 ) ) ) |
31 |
8 30
|
ralimdaa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -∞ < ( 𝐹 ‘ 𝑗 ) ) ) |
32 |
31
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -∞ < ( 𝐹 ‘ 𝑗 ) ) |
33 |
12
|
xnegcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → -𝑒 ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ ) → -𝑒 ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
35 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
36 |
35
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ ) → +∞ ∈ ℝ* ) |
37 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) = ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) |
38 |
37 33
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) = -𝑒 ( 𝐹 ‘ 𝑗 ) ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ ) → ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) = -𝑒 ( 𝐹 ‘ 𝑗 ) ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ ) → ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ ) |
41 |
39 40
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ ) → -𝑒 ( 𝐹 ‘ 𝑗 ) < +∞ ) |
42 |
34 36 41
|
xrltned |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ ) → -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) |
43 |
42
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ → -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) ) |
44 |
9 11 43
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ → -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) ) |
45 |
8 44
|
ralimdaa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) ) |
46 |
45
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) |
47 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) |
48 |
1 33
|
fmptd2f |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℝ* ) |
49 |
4
|
fvexi |
⊢ 𝑍 ∈ V |
50 |
49
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
51 |
5 50
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
52 |
51
|
liminfcld |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
53 |
52
|
xnegnegd |
⊢ ( 𝜑 → -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
54 |
1 2 3 4 5
|
liminfvaluz3 |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = -𝑒 ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) ) |
55 |
53 54
|
eqtr2d |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) = -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) ) |
56 |
50
|
mptexd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ∈ V ) |
57 |
56
|
limsupcld |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ* ) |
58 |
52
|
xnegcld |
⊢ ( 𝜑 → -𝑒 ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
59 |
|
xneg11 |
⊢ ( ( ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ* ∧ -𝑒 ( lim inf ‘ 𝐹 ) ∈ ℝ* ) → ( -𝑒 ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) = -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) ↔ ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) = -𝑒 ( lim inf ‘ 𝐹 ) ) ) |
60 |
57 58 59
|
syl2anc |
⊢ ( 𝜑 → ( -𝑒 ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) = -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) ↔ ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) = -𝑒 ( lim inf ‘ 𝐹 ) ) ) |
61 |
55 60
|
mpbid |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) = -𝑒 ( lim inf ‘ 𝐹 ) ) |
62 |
|
nne |
⊢ ( ¬ -𝑒 ( lim inf ‘ 𝐹 ) ≠ +∞ ↔ -𝑒 ( lim inf ‘ 𝐹 ) = +∞ ) |
63 |
53
|
eqcomd |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ -𝑒 ( lim inf ‘ 𝐹 ) = +∞ ) → ( lim inf ‘ 𝐹 ) = -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) ) |
65 |
|
xnegeq |
⊢ ( -𝑒 ( lim inf ‘ 𝐹 ) = +∞ → -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) = -𝑒 +∞ ) |
66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ -𝑒 ( lim inf ‘ 𝐹 ) = +∞ ) → -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) = -𝑒 +∞ ) |
67 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
68 |
67
|
a1i |
⊢ ( ( 𝜑 ∧ -𝑒 ( lim inf ‘ 𝐹 ) = +∞ ) → -𝑒 +∞ = -∞ ) |
69 |
64 66 68
|
3eqtrd |
⊢ ( ( 𝜑 ∧ -𝑒 ( lim inf ‘ 𝐹 ) = +∞ ) → ( lim inf ‘ 𝐹 ) = -∞ ) |
70 |
62 69
|
sylan2b |
⊢ ( ( 𝜑 ∧ ¬ -𝑒 ( lim inf ‘ 𝐹 ) ≠ +∞ ) → ( lim inf ‘ 𝐹 ) = -∞ ) |
71 |
6
|
neneqd |
⊢ ( 𝜑 → ¬ ( lim inf ‘ 𝐹 ) = -∞ ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ -𝑒 ( lim inf ‘ 𝐹 ) ≠ +∞ ) → ¬ ( lim inf ‘ 𝐹 ) = -∞ ) |
73 |
70 72
|
condan |
⊢ ( 𝜑 → -𝑒 ( lim inf ‘ 𝐹 ) ≠ +∞ ) |
74 |
61 73
|
eqnetrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) ≠ +∞ ) |
75 |
1 47 3 4 48 74
|
limsupubuz2 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗 ∈ 𝑍 ↦ -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 ) < +∞ ) |
76 |
46 75
|
reximddv3 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) |
77 |
32 76
|
reximddv3 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -∞ < ( 𝐹 ‘ 𝑗 ) ) |