Step |
Hyp |
Ref |
Expression |
1 |
|
liminflbuz2.1 |
|
2 |
|
liminflbuz2.2 |
|
3 |
|
liminflbuz2.3 |
|
4 |
|
liminflbuz2.4 |
|
5 |
|
liminflbuz2.5 |
|
6 |
|
liminflbuz2.6 |
|
7 |
|
nfv |
|
8 |
1 7
|
nfan |
|
9 |
|
simpll |
|
10 |
4
|
uztrn2 |
|
11 |
10
|
adantll |
|
12 |
5
|
ffvelrnda |
|
13 |
12
|
adantr |
|
14 |
|
mnfxr |
|
15 |
14
|
a1i |
|
16 |
|
simpr |
|
17 |
13 15 16
|
xrnltled |
|
18 |
|
xlemnf |
|
19 |
13 18
|
syl |
|
20 |
17 19
|
mpbid |
|
21 |
|
xnegeq |
|
22 |
|
xnegmnf |
|
23 |
21 22
|
eqtrdi |
|
24 |
20 23
|
syl |
|
25 |
24
|
adantlr |
|
26 |
|
neneq |
|
27 |
26
|
ad2antlr |
|
28 |
25 27
|
condan |
|
29 |
28
|
ex |
|
30 |
9 11 29
|
syl2anc |
|
31 |
8 30
|
ralimdaa |
|
32 |
31
|
imp |
|
33 |
12
|
xnegcld |
|
34 |
33
|
adantr |
|
35 |
|
pnfxr |
|
36 |
35
|
a1i |
|
37 |
|
eqidd |
|
38 |
37 33
|
fvmpt2d |
|
39 |
38
|
adantr |
|
40 |
|
simpr |
|
41 |
39 40
|
eqbrtrrd |
|
42 |
34 36 41
|
xrltned |
|
43 |
42
|
ex |
|
44 |
9 11 43
|
syl2anc |
|
45 |
8 44
|
ralimdaa |
|
46 |
45
|
imp |
|
47 |
|
nfmpt1 |
|
48 |
1 33
|
fmptd2f |
|
49 |
4
|
fvexi |
|
50 |
49
|
a1i |
|
51 |
5 50
|
fexd |
|
52 |
51
|
liminfcld |
|
53 |
52
|
xnegnegd |
|
54 |
1 2 3 4 5
|
liminfvaluz3 |
|
55 |
53 54
|
eqtr2d |
|
56 |
50
|
mptexd |
|
57 |
56
|
limsupcld |
|
58 |
52
|
xnegcld |
|
59 |
|
xneg11 |
|
60 |
57 58 59
|
syl2anc |
|
61 |
55 60
|
mpbid |
|
62 |
|
nne |
|
63 |
53
|
eqcomd |
|
64 |
63
|
adantr |
|
65 |
|
xnegeq |
|
66 |
65
|
adantl |
|
67 |
|
xnegpnf |
|
68 |
67
|
a1i |
|
69 |
64 66 68
|
3eqtrd |
|
70 |
62 69
|
sylan2b |
|
71 |
6
|
neneqd |
|
72 |
71
|
adantr |
|
73 |
70 72
|
condan |
|
74 |
61 73
|
eqnetrd |
|
75 |
1 47 3 4 48 74
|
limsupubuz2 |
|
76 |
46 75
|
reximddv3 |
|
77 |
32 76
|
reximddv3 |
|