| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminflbuz2.1 |
|
| 2 |
|
liminflbuz2.2 |
|
| 3 |
|
liminflbuz2.3 |
|
| 4 |
|
liminflbuz2.4 |
|
| 5 |
|
liminflbuz2.5 |
|
| 6 |
|
liminflbuz2.6 |
|
| 7 |
|
nfv |
|
| 8 |
1 7
|
nfan |
|
| 9 |
|
simpll |
|
| 10 |
4
|
uztrn2 |
|
| 11 |
10
|
adantll |
|
| 12 |
5
|
ffvelcdmda |
|
| 13 |
12
|
adantr |
|
| 14 |
|
mnfxr |
|
| 15 |
14
|
a1i |
|
| 16 |
|
simpr |
|
| 17 |
13 15 16
|
xrnltled |
|
| 18 |
|
xlemnf |
|
| 19 |
13 18
|
syl |
|
| 20 |
17 19
|
mpbid |
|
| 21 |
|
xnegeq |
|
| 22 |
|
xnegmnf |
|
| 23 |
21 22
|
eqtrdi |
|
| 24 |
20 23
|
syl |
|
| 25 |
24
|
adantlr |
|
| 26 |
|
neneq |
|
| 27 |
26
|
ad2antlr |
|
| 28 |
25 27
|
condan |
|
| 29 |
28
|
ex |
|
| 30 |
9 11 29
|
syl2anc |
|
| 31 |
8 30
|
ralimdaa |
|
| 32 |
31
|
imp |
|
| 33 |
12
|
xnegcld |
|
| 34 |
33
|
adantr |
|
| 35 |
|
pnfxr |
|
| 36 |
35
|
a1i |
|
| 37 |
|
eqidd |
|
| 38 |
37 33
|
fvmpt2d |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
39 40
|
eqbrtrrd |
|
| 42 |
34 36 41
|
xrltned |
|
| 43 |
42
|
ex |
|
| 44 |
9 11 43
|
syl2anc |
|
| 45 |
8 44
|
ralimdaa |
|
| 46 |
45
|
imp |
|
| 47 |
|
nfmpt1 |
|
| 48 |
1 33
|
fmptd2f |
|
| 49 |
4
|
fvexi |
|
| 50 |
49
|
a1i |
|
| 51 |
5 50
|
fexd |
|
| 52 |
51
|
liminfcld |
|
| 53 |
52
|
xnegnegd |
|
| 54 |
1 2 3 4 5
|
liminfvaluz3 |
|
| 55 |
53 54
|
eqtr2d |
|
| 56 |
50
|
mptexd |
|
| 57 |
56
|
limsupcld |
|
| 58 |
52
|
xnegcld |
|
| 59 |
|
xneg11 |
|
| 60 |
57 58 59
|
syl2anc |
|
| 61 |
55 60
|
mpbid |
|
| 62 |
|
nne |
|
| 63 |
53
|
eqcomd |
|
| 64 |
63
|
adantr |
|
| 65 |
|
xnegeq |
|
| 66 |
65
|
adantl |
|
| 67 |
|
xnegpnf |
|
| 68 |
67
|
a1i |
|
| 69 |
64 66 68
|
3eqtrd |
|
| 70 |
62 69
|
sylan2b |
|
| 71 |
6
|
neneqd |
|
| 72 |
71
|
adantr |
|
| 73 |
70 72
|
condan |
|
| 74 |
61 73
|
eqnetrd |
|
| 75 |
1 47 3 4 48 74
|
limsupubuz2 |
|
| 76 |
46 75
|
reximddv3 |
|
| 77 |
32 76
|
reximddv3 |
|