| Step | Hyp | Ref | Expression | 
						
							| 1 |  | liminflbuz2.1 |  |-  F/ j ph | 
						
							| 2 |  | liminflbuz2.2 |  |-  F/_ j F | 
						
							| 3 |  | liminflbuz2.3 |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | liminflbuz2.4 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 5 |  | liminflbuz2.5 |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 6 |  | liminflbuz2.6 |  |-  ( ph -> ( liminf ` F ) =/= -oo ) | 
						
							| 7 |  | nfv |  |-  F/ j k e. Z | 
						
							| 8 | 1 7 | nfan |  |-  F/ j ( ph /\ k e. Z ) | 
						
							| 9 |  | simpll |  |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ph ) | 
						
							| 10 | 4 | uztrn2 |  |-  ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) | 
						
							| 11 | 10 | adantll |  |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) | 
						
							| 12 | 5 | ffvelcdmda |  |-  ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR* ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> ( F ` j ) e. RR* ) | 
						
							| 14 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 15 | 14 | a1i |  |-  ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> -oo e. RR* ) | 
						
							| 16 |  | simpr |  |-  ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> -. -oo < ( F ` j ) ) | 
						
							| 17 | 13 15 16 | xrnltled |  |-  ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> ( F ` j ) <_ -oo ) | 
						
							| 18 |  | xlemnf |  |-  ( ( F ` j ) e. RR* -> ( ( F ` j ) <_ -oo <-> ( F ` j ) = -oo ) ) | 
						
							| 19 | 13 18 | syl |  |-  ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> ( ( F ` j ) <_ -oo <-> ( F ` j ) = -oo ) ) | 
						
							| 20 | 17 19 | mpbid |  |-  ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> ( F ` j ) = -oo ) | 
						
							| 21 |  | xnegeq |  |-  ( ( F ` j ) = -oo -> -e ( F ` j ) = -e -oo ) | 
						
							| 22 |  | xnegmnf |  |-  -e -oo = +oo | 
						
							| 23 | 21 22 | eqtrdi |  |-  ( ( F ` j ) = -oo -> -e ( F ` j ) = +oo ) | 
						
							| 24 | 20 23 | syl |  |-  ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> -e ( F ` j ) = +oo ) | 
						
							| 25 | 24 | adantlr |  |-  ( ( ( ( ph /\ j e. Z ) /\ -e ( F ` j ) =/= +oo ) /\ -. -oo < ( F ` j ) ) -> -e ( F ` j ) = +oo ) | 
						
							| 26 |  | neneq |  |-  ( -e ( F ` j ) =/= +oo -> -. -e ( F ` j ) = +oo ) | 
						
							| 27 | 26 | ad2antlr |  |-  ( ( ( ( ph /\ j e. Z ) /\ -e ( F ` j ) =/= +oo ) /\ -. -oo < ( F ` j ) ) -> -. -e ( F ` j ) = +oo ) | 
						
							| 28 | 25 27 | condan |  |-  ( ( ( ph /\ j e. Z ) /\ -e ( F ` j ) =/= +oo ) -> -oo < ( F ` j ) ) | 
						
							| 29 | 28 | ex |  |-  ( ( ph /\ j e. Z ) -> ( -e ( F ` j ) =/= +oo -> -oo < ( F ` j ) ) ) | 
						
							| 30 | 9 11 29 | syl2anc |  |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( -e ( F ` j ) =/= +oo -> -oo < ( F ` j ) ) ) | 
						
							| 31 | 8 30 | ralimdaa |  |-  ( ( ph /\ k e. Z ) -> ( A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo -> A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo ) -> A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) | 
						
							| 33 | 12 | xnegcld |  |-  ( ( ph /\ j e. Z ) -> -e ( F ` j ) e. RR* ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> -e ( F ` j ) e. RR* ) | 
						
							| 35 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 36 | 35 | a1i |  |-  ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> +oo e. RR* ) | 
						
							| 37 |  | eqidd |  |-  ( ph -> ( j e. Z |-> -e ( F ` j ) ) = ( j e. Z |-> -e ( F ` j ) ) ) | 
						
							| 38 | 37 33 | fvmpt2d |  |-  ( ( ph /\ j e. Z ) -> ( ( j e. Z |-> -e ( F ` j ) ) ` j ) = -e ( F ` j ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> ( ( j e. Z |-> -e ( F ` j ) ) ` j ) = -e ( F ` j ) ) | 
						
							| 40 |  | simpr |  |-  ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) | 
						
							| 41 | 39 40 | eqbrtrrd |  |-  ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> -e ( F ` j ) < +oo ) | 
						
							| 42 | 34 36 41 | xrltned |  |-  ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> -e ( F ` j ) =/= +oo ) | 
						
							| 43 | 42 | ex |  |-  ( ( ph /\ j e. Z ) -> ( ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo -> -e ( F ` j ) =/= +oo ) ) | 
						
							| 44 | 9 11 43 | syl2anc |  |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo -> -e ( F ` j ) =/= +oo ) ) | 
						
							| 45 | 8 44 | ralimdaa |  |-  ( ( ph /\ k e. Z ) -> ( A. j e. ( ZZ>= ` k ) ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo -> A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo ) ) | 
						
							| 46 | 45 | imp |  |-  ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo ) | 
						
							| 47 |  | nfmpt1 |  |-  F/_ j ( j e. Z |-> -e ( F ` j ) ) | 
						
							| 48 | 1 33 | fmptd2f |  |-  ( ph -> ( j e. Z |-> -e ( F ` j ) ) : Z --> RR* ) | 
						
							| 49 | 4 | fvexi |  |-  Z e. _V | 
						
							| 50 | 49 | a1i |  |-  ( ph -> Z e. _V ) | 
						
							| 51 | 5 50 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 52 | 51 | liminfcld |  |-  ( ph -> ( liminf ` F ) e. RR* ) | 
						
							| 53 | 52 | xnegnegd |  |-  ( ph -> -e -e ( liminf ` F ) = ( liminf ` F ) ) | 
						
							| 54 | 1 2 3 4 5 | liminfvaluz3 |  |-  ( ph -> ( liminf ` F ) = -e ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) ) | 
						
							| 55 | 53 54 | eqtr2d |  |-  ( ph -> -e ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e -e ( liminf ` F ) ) | 
						
							| 56 | 50 | mptexd |  |-  ( ph -> ( j e. Z |-> -e ( F ` j ) ) e. _V ) | 
						
							| 57 | 56 | limsupcld |  |-  ( ph -> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) e. RR* ) | 
						
							| 58 | 52 | xnegcld |  |-  ( ph -> -e ( liminf ` F ) e. RR* ) | 
						
							| 59 |  | xneg11 |  |-  ( ( ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) e. RR* /\ -e ( liminf ` F ) e. RR* ) -> ( -e ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e -e ( liminf ` F ) <-> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e ( liminf ` F ) ) ) | 
						
							| 60 | 57 58 59 | syl2anc |  |-  ( ph -> ( -e ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e -e ( liminf ` F ) <-> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e ( liminf ` F ) ) ) | 
						
							| 61 | 55 60 | mpbid |  |-  ( ph -> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e ( liminf ` F ) ) | 
						
							| 62 |  | nne |  |-  ( -. -e ( liminf ` F ) =/= +oo <-> -e ( liminf ` F ) = +oo ) | 
						
							| 63 | 53 | eqcomd |  |-  ( ph -> ( liminf ` F ) = -e -e ( liminf ` F ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ -e ( liminf ` F ) = +oo ) -> ( liminf ` F ) = -e -e ( liminf ` F ) ) | 
						
							| 65 |  | xnegeq |  |-  ( -e ( liminf ` F ) = +oo -> -e -e ( liminf ` F ) = -e +oo ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ph /\ -e ( liminf ` F ) = +oo ) -> -e -e ( liminf ` F ) = -e +oo ) | 
						
							| 67 |  | xnegpnf |  |-  -e +oo = -oo | 
						
							| 68 | 67 | a1i |  |-  ( ( ph /\ -e ( liminf ` F ) = +oo ) -> -e +oo = -oo ) | 
						
							| 69 | 64 66 68 | 3eqtrd |  |-  ( ( ph /\ -e ( liminf ` F ) = +oo ) -> ( liminf ` F ) = -oo ) | 
						
							| 70 | 62 69 | sylan2b |  |-  ( ( ph /\ -. -e ( liminf ` F ) =/= +oo ) -> ( liminf ` F ) = -oo ) | 
						
							| 71 | 6 | neneqd |  |-  ( ph -> -. ( liminf ` F ) = -oo ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ph /\ -. -e ( liminf ` F ) =/= +oo ) -> -. ( liminf ` F ) = -oo ) | 
						
							| 73 | 70 72 | condan |  |-  ( ph -> -e ( liminf ` F ) =/= +oo ) | 
						
							| 74 | 61 73 | eqnetrd |  |-  ( ph -> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) =/= +oo ) | 
						
							| 75 | 1 47 3 4 48 74 | limsupubuz2 |  |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) | 
						
							| 76 | 46 75 | reximddv3 |  |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo ) | 
						
							| 77 | 32 76 | reximddv3 |  |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) |