| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminflbuz2.1 |
|- F/ j ph |
| 2 |
|
liminflbuz2.2 |
|- F/_ j F |
| 3 |
|
liminflbuz2.3 |
|- ( ph -> M e. ZZ ) |
| 4 |
|
liminflbuz2.4 |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
liminflbuz2.5 |
|- ( ph -> F : Z --> RR* ) |
| 6 |
|
liminflbuz2.6 |
|- ( ph -> ( liminf ` F ) =/= -oo ) |
| 7 |
|
nfv |
|- F/ j k e. Z |
| 8 |
1 7
|
nfan |
|- F/ j ( ph /\ k e. Z ) |
| 9 |
|
simpll |
|- ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ph ) |
| 10 |
4
|
uztrn2 |
|- ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) |
| 11 |
10
|
adantll |
|- ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) |
| 12 |
5
|
ffvelcdmda |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR* ) |
| 13 |
12
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> ( F ` j ) e. RR* ) |
| 14 |
|
mnfxr |
|- -oo e. RR* |
| 15 |
14
|
a1i |
|- ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> -oo e. RR* ) |
| 16 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> -. -oo < ( F ` j ) ) |
| 17 |
13 15 16
|
xrnltled |
|- ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> ( F ` j ) <_ -oo ) |
| 18 |
|
xlemnf |
|- ( ( F ` j ) e. RR* -> ( ( F ` j ) <_ -oo <-> ( F ` j ) = -oo ) ) |
| 19 |
13 18
|
syl |
|- ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> ( ( F ` j ) <_ -oo <-> ( F ` j ) = -oo ) ) |
| 20 |
17 19
|
mpbid |
|- ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> ( F ` j ) = -oo ) |
| 21 |
|
xnegeq |
|- ( ( F ` j ) = -oo -> -e ( F ` j ) = -e -oo ) |
| 22 |
|
xnegmnf |
|- -e -oo = +oo |
| 23 |
21 22
|
eqtrdi |
|- ( ( F ` j ) = -oo -> -e ( F ` j ) = +oo ) |
| 24 |
20 23
|
syl |
|- ( ( ( ph /\ j e. Z ) /\ -. -oo < ( F ` j ) ) -> -e ( F ` j ) = +oo ) |
| 25 |
24
|
adantlr |
|- ( ( ( ( ph /\ j e. Z ) /\ -e ( F ` j ) =/= +oo ) /\ -. -oo < ( F ` j ) ) -> -e ( F ` j ) = +oo ) |
| 26 |
|
neneq |
|- ( -e ( F ` j ) =/= +oo -> -. -e ( F ` j ) = +oo ) |
| 27 |
26
|
ad2antlr |
|- ( ( ( ( ph /\ j e. Z ) /\ -e ( F ` j ) =/= +oo ) /\ -. -oo < ( F ` j ) ) -> -. -e ( F ` j ) = +oo ) |
| 28 |
25 27
|
condan |
|- ( ( ( ph /\ j e. Z ) /\ -e ( F ` j ) =/= +oo ) -> -oo < ( F ` j ) ) |
| 29 |
28
|
ex |
|- ( ( ph /\ j e. Z ) -> ( -e ( F ` j ) =/= +oo -> -oo < ( F ` j ) ) ) |
| 30 |
9 11 29
|
syl2anc |
|- ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( -e ( F ` j ) =/= +oo -> -oo < ( F ` j ) ) ) |
| 31 |
8 30
|
ralimdaa |
|- ( ( ph /\ k e. Z ) -> ( A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo -> A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) ) |
| 32 |
31
|
imp |
|- ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo ) -> A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) |
| 33 |
12
|
xnegcld |
|- ( ( ph /\ j e. Z ) -> -e ( F ` j ) e. RR* ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> -e ( F ` j ) e. RR* ) |
| 35 |
|
pnfxr |
|- +oo e. RR* |
| 36 |
35
|
a1i |
|- ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> +oo e. RR* ) |
| 37 |
|
eqidd |
|- ( ph -> ( j e. Z |-> -e ( F ` j ) ) = ( j e. Z |-> -e ( F ` j ) ) ) |
| 38 |
37 33
|
fvmpt2d |
|- ( ( ph /\ j e. Z ) -> ( ( j e. Z |-> -e ( F ` j ) ) ` j ) = -e ( F ` j ) ) |
| 39 |
38
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> ( ( j e. Z |-> -e ( F ` j ) ) ` j ) = -e ( F ` j ) ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) |
| 41 |
39 40
|
eqbrtrrd |
|- ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> -e ( F ` j ) < +oo ) |
| 42 |
34 36 41
|
xrltned |
|- ( ( ( ph /\ j e. Z ) /\ ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> -e ( F ` j ) =/= +oo ) |
| 43 |
42
|
ex |
|- ( ( ph /\ j e. Z ) -> ( ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo -> -e ( F ` j ) =/= +oo ) ) |
| 44 |
9 11 43
|
syl2anc |
|- ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo -> -e ( F ` j ) =/= +oo ) ) |
| 45 |
8 44
|
ralimdaa |
|- ( ( ph /\ k e. Z ) -> ( A. j e. ( ZZ>= ` k ) ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo -> A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo ) ) |
| 46 |
45
|
imp |
|- ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) -> A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo ) |
| 47 |
|
nfmpt1 |
|- F/_ j ( j e. Z |-> -e ( F ` j ) ) |
| 48 |
1 33
|
fmptd2f |
|- ( ph -> ( j e. Z |-> -e ( F ` j ) ) : Z --> RR* ) |
| 49 |
4
|
fvexi |
|- Z e. _V |
| 50 |
49
|
a1i |
|- ( ph -> Z e. _V ) |
| 51 |
5 50
|
fexd |
|- ( ph -> F e. _V ) |
| 52 |
51
|
liminfcld |
|- ( ph -> ( liminf ` F ) e. RR* ) |
| 53 |
52
|
xnegnegd |
|- ( ph -> -e -e ( liminf ` F ) = ( liminf ` F ) ) |
| 54 |
1 2 3 4 5
|
liminfvaluz3 |
|- ( ph -> ( liminf ` F ) = -e ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) ) |
| 55 |
53 54
|
eqtr2d |
|- ( ph -> -e ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e -e ( liminf ` F ) ) |
| 56 |
50
|
mptexd |
|- ( ph -> ( j e. Z |-> -e ( F ` j ) ) e. _V ) |
| 57 |
56
|
limsupcld |
|- ( ph -> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) e. RR* ) |
| 58 |
52
|
xnegcld |
|- ( ph -> -e ( liminf ` F ) e. RR* ) |
| 59 |
|
xneg11 |
|- ( ( ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) e. RR* /\ -e ( liminf ` F ) e. RR* ) -> ( -e ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e -e ( liminf ` F ) <-> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e ( liminf ` F ) ) ) |
| 60 |
57 58 59
|
syl2anc |
|- ( ph -> ( -e ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e -e ( liminf ` F ) <-> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e ( liminf ` F ) ) ) |
| 61 |
55 60
|
mpbid |
|- ( ph -> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) = -e ( liminf ` F ) ) |
| 62 |
|
nne |
|- ( -. -e ( liminf ` F ) =/= +oo <-> -e ( liminf ` F ) = +oo ) |
| 63 |
53
|
eqcomd |
|- ( ph -> ( liminf ` F ) = -e -e ( liminf ` F ) ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ -e ( liminf ` F ) = +oo ) -> ( liminf ` F ) = -e -e ( liminf ` F ) ) |
| 65 |
|
xnegeq |
|- ( -e ( liminf ` F ) = +oo -> -e -e ( liminf ` F ) = -e +oo ) |
| 66 |
65
|
adantl |
|- ( ( ph /\ -e ( liminf ` F ) = +oo ) -> -e -e ( liminf ` F ) = -e +oo ) |
| 67 |
|
xnegpnf |
|- -e +oo = -oo |
| 68 |
67
|
a1i |
|- ( ( ph /\ -e ( liminf ` F ) = +oo ) -> -e +oo = -oo ) |
| 69 |
64 66 68
|
3eqtrd |
|- ( ( ph /\ -e ( liminf ` F ) = +oo ) -> ( liminf ` F ) = -oo ) |
| 70 |
62 69
|
sylan2b |
|- ( ( ph /\ -. -e ( liminf ` F ) =/= +oo ) -> ( liminf ` F ) = -oo ) |
| 71 |
6
|
neneqd |
|- ( ph -> -. ( liminf ` F ) = -oo ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ -. -e ( liminf ` F ) =/= +oo ) -> -. ( liminf ` F ) = -oo ) |
| 73 |
70 72
|
condan |
|- ( ph -> -e ( liminf ` F ) =/= +oo ) |
| 74 |
61 73
|
eqnetrd |
|- ( ph -> ( limsup ` ( j e. Z |-> -e ( F ` j ) ) ) =/= +oo ) |
| 75 |
1 47 3 4 48 74
|
limsupubuz2 |
|- ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( j e. Z |-> -e ( F ` j ) ) ` j ) < +oo ) |
| 76 |
46 75
|
reximddv3 |
|- ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) -e ( F ` j ) =/= +oo ) |
| 77 |
32 76
|
reximddv3 |
|- ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) |