| Step | Hyp | Ref | Expression | 
						
							| 1 |  | liminfpnfuz.1 | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 2 |  | liminfpnfuz.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | liminfpnfuz.3 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | liminfpnfuz.4 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑙 𝜑 | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑙 𝐹 | 
						
							| 7 | 5 6 2 3 4 | liminfvaluz3 | ⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  =  -𝑒 ( lim sup ‘ ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) ) ) ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑗 𝑙 | 
						
							| 9 | 1 8 | nffv | ⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) | 
						
							| 10 | 9 | nfxneg | ⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑙 ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑙 -𝑒 ( 𝐹 ‘ 𝑗 ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑙  =  𝑗  →  ( 𝐹 ‘ 𝑙 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 13 | 12 | xnegeqd | ⊢ ( 𝑙  =  𝑗  →  -𝑒 ( 𝐹 ‘ 𝑙 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 14 | 10 11 13 | cbvmpt | ⊢ ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) )  =  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 15 | 14 | fveq2i | ⊢ ( lim sup ‘ ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) ) )  =  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 16 | 15 | xnegeqi | ⊢ -𝑒 ( lim sup ‘ ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 17 | 7 16 | eqtrdi | ⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  =  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( 𝜑  →  ( ( lim inf ‘ 𝐹 )  =  +∞  ↔  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  +∞ ) ) | 
						
							| 19 |  | xnegmnf | ⊢ -𝑒 -∞  =  +∞ | 
						
							| 20 | 19 | eqcomi | ⊢ +∞  =  -𝑒 -∞ | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  +∞  =  -𝑒 -∞ ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝜑  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  +∞  ↔  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 -∞ ) ) | 
						
							| 23 | 3 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 24 | 23 | mptex | ⊢ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  ∈  V | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  ∈  V ) | 
						
							| 26 | 25 | limsupcld | ⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ* ) | 
						
							| 27 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 28 |  | xneg11 | ⊢ ( ( ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ*  ∧  -∞  ∈  ℝ* )  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 -∞  ↔  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞ ) ) | 
						
							| 29 | 26 27 28 | sylancl | ⊢ ( 𝜑  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 -∞  ↔  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞ ) ) | 
						
							| 30 | 22 29 | bitrd | ⊢ ( 𝜑  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  +∞  ↔  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞ ) ) | 
						
							| 31 | 3 | uztrn2 | ⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 32 |  | xnegex | ⊢ -𝑒 ( 𝐹 ‘ 𝑗 )  ∈  V | 
						
							| 33 |  | fvmpt4 | ⊢ ( ( 𝑗  ∈  𝑍  ∧  -𝑒 ( 𝐹 ‘ 𝑗 )  ∈  V )  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 34 | 31 32 33 | sylancl | ⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 35 | 34 | breq1d | ⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 36 | 35 | ralbidva | ⊢ ( 𝑘  ∈  𝑍  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 37 | 36 | rexbiia | ⊢ ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 38 | 37 | ralbii | ⊢ ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 39 | 38 | a1i | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 40 |  | nfmpt1 | ⊢ Ⅎ 𝑗 ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 41 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* ) | 
						
							| 42 | 41 | xnegcld | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝑍 )  →  -𝑒 ( 𝐹 ‘ 𝑙 )  ∈  ℝ* ) | 
						
							| 43 | 14 | eqcomi | ⊢ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) ) | 
						
							| 44 | 42 43 | fmptd | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℝ* ) | 
						
							| 45 | 40 2 3 44 | limsupmnfuz | ⊢ ( 𝜑  →  ( ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 46 | 1 3 4 | xlimpnfxnegmnf | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 47 | 39 45 46 | 3bitr4d | ⊢ ( 𝜑  →  ( ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 48 | 18 30 47 | 3bitrd | ⊢ ( 𝜑  →  ( ( lim inf ‘ 𝐹 )  =  +∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 ) ) ) |