Step |
Hyp |
Ref |
Expression |
1 |
|
liminflimsupxrre.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
liminflimsupxrre.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
liminflimsupxrre.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
|
liminflimsupxrre.4 |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≠ +∞ ) |
5 |
|
liminflimsupxrre.5 |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ≠ -∞ ) |
6 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝜑 ) |
7 |
2
|
uztrn2 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ 𝑍 ) |
8 |
7
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ 𝑍 ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
10 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑍 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → dom 𝐹 = 𝑍 ) |
12 |
9 11
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ dom 𝐹 ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → 𝑗 ∈ dom 𝐹 ) |
14 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
16 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
17 |
16
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → -∞ ∈ ℝ* ) |
18 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
19 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → -∞ < ( 𝐹 ‘ 𝑗 ) ) |
20 |
17 18 19
|
xrgtned |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ≠ -∞ ) |
21 |
20
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ≠ -∞ ) |
22 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
23 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
24 |
23
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) → +∞ ∈ ℝ* ) |
25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) → ( 𝐹 ‘ 𝑗 ) < +∞ ) |
26 |
22 24 25
|
xrltned |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) → ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) |
27 |
26
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ≠ +∞ ) |
28 |
15 21 27
|
xrred |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
29 |
13 28
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑗 ) < +∞ ) ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) |
30 |
29
|
expl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑗 ) < +∞ ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) ) |
31 |
6 8 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) < +∞ ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) ) |
32 |
31
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 ) < +∞ ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) ) |
33 |
32
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 ) < +∞ ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) |
34 |
3
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
35 |
|
ffvresb |
⊢ ( Fun 𝐹 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 ) < +∞ ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝑗 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) ) ) |
38 |
33 37
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 ) < +∞ ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ ) |
39 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
40 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐹 |
41 |
39 40 1 2 3 4
|
limsupubuz2 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) < +∞ ) |
42 |
39 40 1 2 3 5
|
liminflbuz2 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -∞ < ( 𝐹 ‘ 𝑗 ) ) |
43 |
2
|
rexanuz2 |
⊢ ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 ) < +∞ ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) ↔ ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) < +∞ ∧ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) -∞ < ( 𝐹 ‘ 𝑗 ) ) ) |
44 |
41 42 43
|
sylanbrc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 ) < +∞ ∧ -∞ < ( 𝐹 ‘ 𝑗 ) ) ) |
45 |
38 44
|
reximddv3 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ ) |