| Step | Hyp | Ref | Expression | 
						
							| 1 |  | liminflimsupxrre.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | liminflimsupxrre.2 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | liminflimsupxrre.3 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 |  | liminflimsupxrre.4 | ⊢ ( 𝜑  →  ( lim sup ‘ 𝐹 )  ≠  +∞ ) | 
						
							| 5 |  | liminflimsupxrre.5 | ⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  ≠  -∞ ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝜑 ) | 
						
							| 7 | 2 | uztrn2 | ⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 8 | 7 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝑍 ) | 
						
							| 10 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝑍 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  dom  𝐹  =  𝑍 ) | 
						
							| 12 | 9 11 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  dom  𝐹 ) | 
						
							| 13 | 12 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  𝑗  ∈  dom  𝐹 ) | 
						
							| 14 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 15 | 14 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 16 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 17 | 16 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  -∞  ∈  ℝ* ) | 
						
							| 18 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  -∞  <  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 20 | 17 18 19 | xrgtned | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ≠  -∞ ) | 
						
							| 21 | 20 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ≠  -∞ ) | 
						
							| 22 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 23 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 24 | 23 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  →  +∞  ∈  ℝ* ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) | 
						
							| 26 | 22 24 25 | xrltned | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  →  ( 𝐹 ‘ 𝑗 )  ≠  +∞ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ≠  +∞ ) | 
						
							| 28 | 15 21 27 | xrred | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 29 | 13 28 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝐹 ‘ 𝑗 )  <  +∞ )  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝑗  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) ) | 
						
							| 30 | 29 | expl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑗 )  <  +∞  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝑗  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) ) ) | 
						
							| 31 | 6 8 30 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( 𝐹 ‘ 𝑗 )  <  +∞  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝑗  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) ) ) | 
						
							| 32 | 31 | ralimdva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 )  <  +∞  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝑗  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 )  <  +∞  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) ) )  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝑗  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) ) | 
						
							| 34 | 3 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 35 |  | ffvresb | ⊢ ( Fun  𝐹  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝑗  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝑗  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) ) ) | 
						
							| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 )  <  +∞  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) ) )  →  ( ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝑗  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑗 )  ∈  ℝ ) ) ) | 
						
							| 38 | 33 37 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 )  <  +∞  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) ) )  →  ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ ) | 
						
							| 39 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 41 | 39 40 1 2 3 4 | limsupubuz2 | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 )  <  +∞ ) | 
						
							| 42 | 39 40 1 2 3 5 | liminflbuz2 | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -∞  <  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 43 | 2 | rexanuz2 | ⊢ ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 )  <  +∞  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) )  ↔  ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 )  <  +∞  ∧  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -∞  <  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 44 | 41 42 43 | sylanbrc | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑗 )  <  +∞  ∧  -∞  <  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 45 | 38 44 | reximddv3 | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 ( 𝐹  ↾  ( ℤ≥ ‘ 𝑘 ) ) : ( ℤ≥ ‘ 𝑘 ) ⟶ ℝ ) |