| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminflimsupxrre.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
liminflimsupxrre.2 |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
liminflimsupxrre.3 |
|- ( ph -> F : Z --> RR* ) |
| 4 |
|
liminflimsupxrre.4 |
|- ( ph -> ( limsup ` F ) =/= +oo ) |
| 5 |
|
liminflimsupxrre.5 |
|- ( ph -> ( liminf ` F ) =/= -oo ) |
| 6 |
|
simpll |
|- ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ph ) |
| 7 |
2
|
uztrn2 |
|- ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) |
| 8 |
7
|
adantll |
|- ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) |
| 9 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
| 10 |
3
|
fdmd |
|- ( ph -> dom F = Z ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ j e. Z ) -> dom F = Z ) |
| 12 |
9 11
|
eleqtrrd |
|- ( ( ph /\ j e. Z ) -> j e. dom F ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> j e. dom F ) |
| 14 |
3
|
ffvelcdmda |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR* ) |
| 15 |
14
|
ad2antrr |
|- ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) e. RR* ) |
| 16 |
|
mnfxr |
|- -oo e. RR* |
| 17 |
16
|
a1i |
|- ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> -oo e. RR* ) |
| 18 |
14
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> ( F ` j ) e. RR* ) |
| 19 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> -oo < ( F ` j ) ) |
| 20 |
17 18 19
|
xrgtned |
|- ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> ( F ` j ) =/= -oo ) |
| 21 |
20
|
adantlr |
|- ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) =/= -oo ) |
| 22 |
14
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> ( F ` j ) e. RR* ) |
| 23 |
|
pnfxr |
|- +oo e. RR* |
| 24 |
23
|
a1i |
|- ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> +oo e. RR* ) |
| 25 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> ( F ` j ) < +oo ) |
| 26 |
22 24 25
|
xrltned |
|- ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> ( F ` j ) =/= +oo ) |
| 27 |
26
|
adantr |
|- ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) =/= +oo ) |
| 28 |
15 21 27
|
xrred |
|- ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) e. RR ) |
| 29 |
13 28
|
jca |
|- ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( j e. dom F /\ ( F ` j ) e. RR ) ) |
| 30 |
29
|
expl |
|- ( ( ph /\ j e. Z ) -> ( ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) -> ( j e. dom F /\ ( F ` j ) e. RR ) ) ) |
| 31 |
6 8 30
|
syl2anc |
|- ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) -> ( j e. dom F /\ ( F ` j ) e. RR ) ) ) |
| 32 |
31
|
ralimdva |
|- ( ( ph /\ k e. Z ) -> ( A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) -> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) ) |
| 33 |
32
|
imp |
|- ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) -> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) |
| 34 |
3
|
ffund |
|- ( ph -> Fun F ) |
| 35 |
|
ffvresb |
|- ( Fun F -> ( ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR <-> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) ) |
| 36 |
34 35
|
syl |
|- ( ph -> ( ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR <-> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) ) |
| 37 |
36
|
ad2antrr |
|- ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) -> ( ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR <-> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) ) |
| 38 |
33 37
|
mpbird |
|- ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) -> ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR ) |
| 39 |
|
nfv |
|- F/ j ph |
| 40 |
|
nfcv |
|- F/_ j F |
| 41 |
39 40 1 2 3 4
|
limsupubuz2 |
|- ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo ) |
| 42 |
39 40 1 2 3 5
|
liminflbuz2 |
|- ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) |
| 43 |
2
|
rexanuz2 |
|- ( E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) <-> ( E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo /\ E. k e. Z A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) ) |
| 44 |
41 42 43
|
sylanbrc |
|- ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) |
| 45 |
38 44
|
reximddv3 |
|- ( ph -> E. k e. Z ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR ) |