| Step | Hyp | Ref | Expression | 
						
							| 1 |  | liminflimsupxrre.1 |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | liminflimsupxrre.2 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | liminflimsupxrre.3 |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 4 |  | liminflimsupxrre.4 |  |-  ( ph -> ( limsup ` F ) =/= +oo ) | 
						
							| 5 |  | liminflimsupxrre.5 |  |-  ( ph -> ( liminf ` F ) =/= -oo ) | 
						
							| 6 |  | simpll |  |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ph ) | 
						
							| 7 | 2 | uztrn2 |  |-  ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) | 
						
							| 8 | 7 | adantll |  |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> j e. Z ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ j e. Z ) -> j e. Z ) | 
						
							| 10 | 3 | fdmd |  |-  ( ph -> dom F = Z ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ j e. Z ) -> dom F = Z ) | 
						
							| 12 | 9 11 | eleqtrrd |  |-  ( ( ph /\ j e. Z ) -> j e. dom F ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> j e. dom F ) | 
						
							| 14 | 3 | ffvelcdmda |  |-  ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR* ) | 
						
							| 15 | 14 | ad2antrr |  |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) e. RR* ) | 
						
							| 16 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 17 | 16 | a1i |  |-  ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> -oo e. RR* ) | 
						
							| 18 | 14 | adantr |  |-  ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> ( F ` j ) e. RR* ) | 
						
							| 19 |  | simpr |  |-  ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> -oo < ( F ` j ) ) | 
						
							| 20 | 17 18 19 | xrgtned |  |-  ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> ( F ` j ) =/= -oo ) | 
						
							| 21 | 20 | adantlr |  |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) =/= -oo ) | 
						
							| 22 | 14 | adantr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> ( F ` j ) e. RR* ) | 
						
							| 23 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 24 | 23 | a1i |  |-  ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> +oo e. RR* ) | 
						
							| 25 |  | simpr |  |-  ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> ( F ` j ) < +oo ) | 
						
							| 26 | 22 24 25 | xrltned |  |-  ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> ( F ` j ) =/= +oo ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) =/= +oo ) | 
						
							| 28 | 15 21 27 | xrred |  |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) e. RR ) | 
						
							| 29 | 13 28 | jca |  |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( j e. dom F /\ ( F ` j ) e. RR ) ) | 
						
							| 30 | 29 | expl |  |-  ( ( ph /\ j e. Z ) -> ( ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) -> ( j e. dom F /\ ( F ` j ) e. RR ) ) ) | 
						
							| 31 | 6 8 30 | syl2anc |  |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) -> ( j e. dom F /\ ( F ` j ) e. RR ) ) ) | 
						
							| 32 | 31 | ralimdva |  |-  ( ( ph /\ k e. Z ) -> ( A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) -> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) ) | 
						
							| 33 | 32 | imp |  |-  ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) -> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) | 
						
							| 34 | 3 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 35 |  | ffvresb |  |-  ( Fun F -> ( ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR <-> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ph -> ( ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR <-> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) ) | 
						
							| 37 | 36 | ad2antrr |  |-  ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) -> ( ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR <-> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) ) | 
						
							| 38 | 33 37 | mpbird |  |-  ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) -> ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR ) | 
						
							| 39 |  | nfv |  |-  F/ j ph | 
						
							| 40 |  | nfcv |  |-  F/_ j F | 
						
							| 41 | 39 40 1 2 3 4 | limsupubuz2 |  |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo ) | 
						
							| 42 | 39 40 1 2 3 5 | liminflbuz2 |  |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) | 
						
							| 43 | 2 | rexanuz2 |  |-  ( E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) <-> ( E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo /\ E. k e. Z A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) ) | 
						
							| 44 | 41 42 43 | sylanbrc |  |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) | 
						
							| 45 | 38 44 | reximddv3 |  |-  ( ph -> E. k e. Z ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR ) |