Metamath Proof Explorer


Theorem liminflimsupxrre

Description: A sequence with values in the extended reals, and with real liminf and limsup, is eventually real. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses liminflimsupxrre.1 φ M
liminflimsupxrre.2 Z = M
liminflimsupxrre.3 φ F : Z *
liminflimsupxrre.4 φ lim sup F +∞
liminflimsupxrre.5 φ lim inf F −∞
Assertion liminflimsupxrre φ k Z F k : k

Proof

Step Hyp Ref Expression
1 liminflimsupxrre.1 φ M
2 liminflimsupxrre.2 Z = M
3 liminflimsupxrre.3 φ F : Z *
4 liminflimsupxrre.4 φ lim sup F +∞
5 liminflimsupxrre.5 φ lim inf F −∞
6 simpll φ k Z j k φ
7 2 uztrn2 k Z j k j Z
8 7 adantll φ k Z j k j Z
9 simpr φ j Z j Z
10 3 fdmd φ dom F = Z
11 10 adantr φ j Z dom F = Z
12 9 11 eleqtrrd φ j Z j dom F
13 12 ad2antrr φ j Z F j < +∞ −∞ < F j j dom F
14 3 ffvelrnda φ j Z F j *
15 14 ad2antrr φ j Z F j < +∞ −∞ < F j F j *
16 mnfxr −∞ *
17 16 a1i φ j Z −∞ < F j −∞ *
18 14 adantr φ j Z −∞ < F j F j *
19 simpr φ j Z −∞ < F j −∞ < F j
20 17 18 19 xrgtned φ j Z −∞ < F j F j −∞
21 20 adantlr φ j Z F j < +∞ −∞ < F j F j −∞
22 14 adantr φ j Z F j < +∞ F j *
23 pnfxr +∞ *
24 23 a1i φ j Z F j < +∞ +∞ *
25 simpr φ j Z F j < +∞ F j < +∞
26 22 24 25 xrltned φ j Z F j < +∞ F j +∞
27 26 adantr φ j Z F j < +∞ −∞ < F j F j +∞
28 15 21 27 xrred φ j Z F j < +∞ −∞ < F j F j
29 13 28 jca φ j Z F j < +∞ −∞ < F j j dom F F j
30 29 expl φ j Z F j < +∞ −∞ < F j j dom F F j
31 6 8 30 syl2anc φ k Z j k F j < +∞ −∞ < F j j dom F F j
32 31 ralimdva φ k Z j k F j < +∞ −∞ < F j j k j dom F F j
33 32 imp φ k Z j k F j < +∞ −∞ < F j j k j dom F F j
34 3 ffund φ Fun F
35 ffvresb Fun F F k : k j k j dom F F j
36 34 35 syl φ F k : k j k j dom F F j
37 36 ad2antrr φ k Z j k F j < +∞ −∞ < F j F k : k j k j dom F F j
38 33 37 mpbird φ k Z j k F j < +∞ −∞ < F j F k : k
39 nfv j φ
40 nfcv _ j F
41 39 40 1 2 3 4 limsupubuz2 φ k Z j k F j < +∞
42 39 40 1 2 3 5 liminflbuz2 φ k Z j k −∞ < F j
43 2 rexanuz2 k Z j k F j < +∞ −∞ < F j k Z j k F j < +∞ k Z j k −∞ < F j
44 41 42 43 sylanbrc φ k Z j k F j < +∞ −∞ < F j
45 38 44 reximddv3 φ k Z F k : k