Metamath Proof Explorer


Theorem xlimpnfxnegmnf

Description: A sequence converges to +oo if and only if its negation converges to -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimpnfxnegmnf.1 _jF
xlimpnfxnegmnf.2 Z=M
xlimpnfxnegmnf.3 φF:Z*
Assertion xlimpnfxnegmnf φxkZjkxFjxkZjkFjx

Proof

Step Hyp Ref Expression
1 xlimpnfxnegmnf.1 _jF
2 xlimpnfxnegmnf.2 Z=M
3 xlimpnfxnegmnf.3 φF:Z*
4 breq1 x=yxFjyFj
5 4 rexralbidv x=ykZjkxFjkZjkyFj
6 fveq2 k=ik=i
7 6 raleqdv k=ijkyFjjiyFj
8 nfv lyFj
9 nfcv _jy
10 nfcv _j
11 nfcv _jl
12 1 11 nffv _jFl
13 9 10 12 nfbr jyFl
14 fveq2 j=lFj=Fl
15 14 breq2d j=lyFjyFl
16 8 13 15 cbvralw jiyFjliyFl
17 7 16 bitrdi k=ijkyFjliyFl
18 17 cbvrexvw kZjkyFjiZliyFl
19 5 18 bitrdi x=ykZjkxFjiZliyFl
20 19 cbvralvw xkZjkxFjyiZliyFl
21 20 a1i φxkZjkxFjyiZliyFl
22 simpll φyiZliyFlwφ
23 simpr φyiZliyFlww
24 xnegrecl ww
25 simpl yiZliyFlwyiZliyFl
26 breq1 y=wyFlwFl
27 26 rexralbidv y=wiZliyFliZliwFl
28 27 rspcva wyiZliyFliZliwFl
29 24 25 28 syl2an2 yiZliyFlwiZliwFl
30 29 adantll φyiZliyFlwiZliwFl
31 simpll φwiZliφw
32 2 uztrn2 iZlilZ
33 32 adantll φwiZlilZ
34 rexr ww*
35 34 ad2antlr φwlZw*
36 3 ffvelcdmda φlZFl*
37 36 adantlr φwlZFl*
38 xlenegcon1 w*Fl*wFlFlw
39 35 37 38 syl2anc φwlZwFlFlw
40 39 biimpd φwlZwFlFlw
41 31 33 40 syl2anc φwiZliwFlFlw
42 41 ralimdva φwiZliwFlliFlw
43 42 reximdva φwiZliwFliZliFlw
44 43 imp φwiZliwFliZliFlw
45 22 23 30 44 syl21anc φyiZliyFlwiZliFlw
46 45 ralrimiva φyiZliyFlwiZliFlw
47 simpll φwiZliFlwyφ
48 simpr φwiZliFlwyy
49 xnegrecl yy
50 simpl wiZliFlwywiZliFlw
51 breq2 w=yFlwFly
52 51 rexralbidv w=yiZliFlwiZliFly
53 52 rspcva ywiZliFlwiZliFly
54 49 50 53 syl2an2 wiZliFlwyiZliFly
55 54 adantll φwiZliFlwyiZliFly
56 simpll φyiZliφy
57 32 adantll φyiZlilZ
58 rexr yy*
59 58 ad2antlr φylZy*
60 36 adantlr φylZFl*
61 xleneg y*Fl*yFlFly
62 59 60 61 syl2anc φylZyFlFly
63 62 biimprd φylZFlyyFl
64 56 57 63 syl2anc φyiZliFlyyFl
65 64 ralimdva φyiZliFlyliyFl
66 65 reximdva φyiZliFlyiZliyFl
67 66 imp φyiZliFlyiZliyFl
68 47 48 55 67 syl21anc φwiZliFlwyiZliyFl
69 68 ralrimiva φwiZliFlwyiZliyFl
70 46 69 impbida φyiZliyFlwiZliFlw
71 breq2 w=xFlwFlx
72 71 rexralbidv w=xiZliFlwiZliFlx
73 fveq2 i=ki=k
74 73 raleqdv i=kliFlxlkFlx
75 12 nfxneg _jFl
76 nfcv _jx
77 75 10 76 nfbr jFlx
78 nfv lFjx
79 fveq2 l=jFl=Fj
80 79 xnegeqd l=jFl=Fj
81 80 breq1d l=jFlxFjx
82 77 78 81 cbvralw lkFlxjkFjx
83 74 82 bitrdi i=kliFlxjkFjx
84 83 cbvrexvw iZliFlxkZjkFjx
85 72 84 bitrdi w=xiZliFlwkZjkFjx
86 85 cbvralvw wiZliFlwxkZjkFjx
87 86 a1i φwiZliFlwxkZjkFjx
88 21 70 87 3bitrd φxkZjkxFjxkZjkFjx