Metamath Proof Explorer


Theorem xlenegcon1

Description: Extended real version of lenegcon1 . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Assertion xlenegcon1 A*B*ABBA

Proof

Step Hyp Ref Expression
1 xnegcl A*A*
2 xleneg A*B*ABBA
3 1 2 sylan A*B*ABBA
4 xnegneg A*A=A
5 4 breq2d A*BABA
6 5 adantr A*B*BABA
7 3 6 bitrd A*B*ABBA