Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Ordering on real numbers - Real and complex numbers basic operations
xlenegcon1
Next ⟩
xlenegcon2
Metamath Proof Explorer
Ascii
Unicode
Theorem
xlenegcon1
Description:
Extended real version of
lenegcon1
.
(Contributed by
Glauco Siliprandi
, 23-Apr-2023)
Ref
Expression
Assertion
xlenegcon1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
≤
B
↔
−
B
≤
A
Proof
Step
Hyp
Ref
Expression
1
xnegcl
⊢
A
∈
ℝ
*
→
−
A
∈
ℝ
*
2
xleneg
⊢
−
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
≤
B
↔
−
B
≤
−
−
A
3
1
2
sylan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
≤
B
↔
−
B
≤
−
−
A
4
xnegneg
⊢
A
∈
ℝ
*
→
−
−
A
=
A
5
4
breq2d
⊢
A
∈
ℝ
*
→
−
B
≤
−
−
A
↔
−
B
≤
A
6
5
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
B
≤
−
−
A
↔
−
B
≤
A
7
3
6
bitrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
A
≤
B
↔
−
B
≤
A