Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Ordering on real numbers - Real and complex numbers basic operations
xlenegcon2
Next ⟩
pimxrneun
Metamath Proof Explorer
Ascii
Unicode
Theorem
xlenegcon2
Description:
Extended real version of
lenegcon2
.
(Contributed by
Glauco Siliprandi
, 23-Apr-2023)
Ref
Expression
Assertion
xlenegcon2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≤
−
B
↔
B
≤
−
A
Proof
Step
Hyp
Ref
Expression
1
xnegcl
⊢
B
∈
ℝ
*
→
−
B
∈
ℝ
*
2
xleneg
⊢
A
∈
ℝ
*
∧
−
B
∈
ℝ
*
→
A
≤
−
B
↔
−
−
B
≤
−
A
3
1
2
sylan2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≤
−
B
↔
−
−
B
≤
−
A
4
xnegneg
⊢
B
∈
ℝ
*
→
−
−
B
=
B
5
4
breq1d
⊢
B
∈
ℝ
*
→
−
−
B
≤
−
A
↔
B
≤
−
A
6
5
adantl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
−
−
B
≤
−
A
↔
B
≤
−
A
7
3
6
bitrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≤
−
B
↔
B
≤
−
A