Description: Extended real version of lenegcon2 . (Contributed by Glauco Siliprandi, 23-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlenegcon2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ -e B <-> B <_ -e A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xnegcl | |- ( B e. RR* -> -e B e. RR* ) | |
| 2 | xleneg | |- ( ( A e. RR* /\ -e B e. RR* ) -> ( A <_ -e B <-> -e -e B <_ -e A ) ) | |
| 3 | 1 2 | sylan2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ -e B <-> -e -e B <_ -e A ) ) | 
| 4 | xnegneg | |- ( B e. RR* -> -e -e B = B ) | |
| 5 | 4 | breq1d | |- ( B e. RR* -> ( -e -e B <_ -e A <-> B <_ -e A ) ) | 
| 6 | 5 | adantl | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e -e B <_ -e A <-> B <_ -e A ) ) | 
| 7 | 3 6 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ -e B <-> B <_ -e A ) ) |