| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pimxrneun.1 |  |-  F/ x ph | 
						
							| 2 |  | pimxrneun.2 |  |-  ( ( ph /\ x e. A ) -> B e. RR* ) | 
						
							| 3 |  | pimxrneun.3 |  |-  ( ( ph /\ x e. A ) -> C e. RR* ) | 
						
							| 4 |  | nfrab1 |  |-  F/_ x { x e. A | B < C } | 
						
							| 5 |  | nfrab1 |  |-  F/_ x { x e. A | C < B } | 
						
							| 6 | 4 5 | nfun |  |-  F/_ x ( { x e. A | B < C } u. { x e. A | C < B } ) | 
						
							| 7 |  | simpl |  |-  ( ( x e. A /\ B < C ) -> x e. A ) | 
						
							| 8 |  | simpr |  |-  ( ( x e. A /\ B < C ) -> B < C ) | 
						
							| 9 | 7 8 | jca |  |-  ( ( x e. A /\ B < C ) -> ( x e. A /\ B < C ) ) | 
						
							| 10 |  | rabid |  |-  ( x e. { x e. A | B < C } <-> ( x e. A /\ B < C ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( x e. A /\ B < C ) -> x e. { x e. A | B < C } ) | 
						
							| 12 | 11 | adantll |  |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> x e. { x e. A | B < C } ) | 
						
							| 13 |  | elun1 |  |-  ( x e. { x e. A | B < C } -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
							| 15 | 14 | 3adantl3 |  |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ B < C ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
							| 16 |  | 3simpa |  |-  ( ( ph /\ x e. A /\ B =/= C ) -> ( ph /\ x e. A ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> ( ph /\ x e. A ) ) | 
						
							| 18 | 3 | adantr |  |-  ( ( ( ph /\ x e. A ) /\ -. B < C ) -> C e. RR* ) | 
						
							| 19 | 18 | 3adantl3 |  |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> C e. RR* ) | 
						
							| 20 | 2 | adantr |  |-  ( ( ( ph /\ x e. A ) /\ -. B < C ) -> B e. RR* ) | 
						
							| 21 | 20 | 3adantl3 |  |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> B e. RR* ) | 
						
							| 22 |  | simpr |  |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> -. B < C ) | 
						
							| 23 | 19 21 22 | xrnltled |  |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> C <_ B ) | 
						
							| 24 |  | necom |  |-  ( B =/= C <-> C =/= B ) | 
						
							| 25 | 24 | biimpi |  |-  ( B =/= C -> C =/= B ) | 
						
							| 26 | 25 | adantr |  |-  ( ( B =/= C /\ -. B < C ) -> C =/= B ) | 
						
							| 27 | 26 | 3ad2antl3 |  |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> C =/= B ) | 
						
							| 28 | 19 21 23 27 | xrleneltd |  |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> C < B ) | 
						
							| 29 |  | id |  |-  ( ( x e. A /\ C < B ) -> ( x e. A /\ C < B ) ) | 
						
							| 30 | 29 | adantll |  |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> ( x e. A /\ C < B ) ) | 
						
							| 31 |  | rabid |  |-  ( x e. { x e. A | C < B } <-> ( x e. A /\ C < B ) ) | 
						
							| 32 | 30 31 | sylibr |  |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> x e. { x e. A | C < B } ) | 
						
							| 33 |  | elun2 |  |-  ( x e. { x e. A | C < B } -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
							| 35 | 17 28 34 | syl2anc |  |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
							| 36 | 15 35 | pm2.61dan |  |-  ( ( ph /\ x e. A /\ B =/= C ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
							| 37 | 1 6 36 | rabssd |  |-  ( ph -> { x e. A | B =/= C } C_ ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
							| 38 | 2 | adantr |  |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> B e. RR* ) | 
						
							| 39 | 3 | adantr |  |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> C e. RR* ) | 
						
							| 40 |  | simpr |  |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> B < C ) | 
						
							| 41 | 38 39 40 | xrltned |  |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> B =/= C ) | 
						
							| 42 | 41 | ex |  |-  ( ( ph /\ x e. A ) -> ( B < C -> B =/= C ) ) | 
						
							| 43 | 1 42 | ss2rabdf |  |-  ( ph -> { x e. A | B < C } C_ { x e. A | B =/= C } ) | 
						
							| 44 | 3 | adantr |  |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> C e. RR* ) | 
						
							| 45 | 2 | adantr |  |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> B e. RR* ) | 
						
							| 46 |  | simpr |  |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> C < B ) | 
						
							| 47 | 44 45 46 | xrgtned |  |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> B =/= C ) | 
						
							| 48 | 47 | ex |  |-  ( ( ph /\ x e. A ) -> ( C < B -> B =/= C ) ) | 
						
							| 49 | 1 48 | ss2rabdf |  |-  ( ph -> { x e. A | C < B } C_ { x e. A | B =/= C } ) | 
						
							| 50 | 43 49 | unssd |  |-  ( ph -> ( { x e. A | B < C } u. { x e. A | C < B } ) C_ { x e. A | B =/= C } ) | 
						
							| 51 | 37 50 | eqssd |  |-  ( ph -> { x e. A | B =/= C } = ( { x e. A | B < C } u. { x e. A | C < B } ) ) |