Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabssd.1 | |- F/ x ph |
|
| rabssd.2 | |- F/_ x B |
||
| rabssd.3 | |- ( ( ph /\ x e. A /\ ch ) -> x e. B ) |
||
| Assertion | rabssd | |- ( ph -> { x e. A | ch } C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssd.1 | |- F/ x ph |
|
| 2 | rabssd.2 | |- F/_ x B |
|
| 3 | rabssd.3 | |- ( ( ph /\ x e. A /\ ch ) -> x e. B ) |
|
| 4 | 3 | 3exp | |- ( ph -> ( x e. A -> ( ch -> x e. B ) ) ) |
| 5 | 1 4 | ralrimi | |- ( ph -> A. x e. A ( ch -> x e. B ) ) |
| 6 | 2 | rabssf | |- ( { x e. A | ch } C_ B <-> A. x e. A ( ch -> x e. B ) ) |
| 7 | 5 6 | sylibr | |- ( ph -> { x e. A | ch } C_ B ) |