Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabssd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rabssd.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| rabssd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒 ) → 𝑥 ∈ 𝐵 ) | ||
| Assertion | rabssd | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜒 } ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rabssd.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | rabssd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒 ) → 𝑥 ∈ 𝐵 ) | |
| 4 | 3 | 3exp | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜒 → 𝑥 ∈ 𝐵 ) ) ) |
| 5 | 1 4 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜒 → 𝑥 ∈ 𝐵 ) ) |
| 6 | 2 | rabssf | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜒 } ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜒 → 𝑥 ∈ 𝐵 ) ) |
| 7 | 5 6 | sylibr | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜒 } ⊆ 𝐵 ) |