| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caucvgbf.1 |  |-  F/_ j F | 
						
							| 2 |  | caucvgbf.2 |  |-  F/_ k F | 
						
							| 3 |  | caucvgbf.3 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 4 | 3 | caucvgb |  |-  ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) ) ) | 
						
							| 5 |  | nfcv |  |-  F/_ j ( ZZ>= ` i ) | 
						
							| 6 |  | nfcv |  |-  F/_ j l | 
						
							| 7 | 1 6 | nffv |  |-  F/_ j ( F ` l ) | 
						
							| 8 | 7 | nfel1 |  |-  F/ j ( F ` l ) e. CC | 
						
							| 9 |  | nfcv |  |-  F/_ j abs | 
						
							| 10 |  | nfcv |  |-  F/_ j - | 
						
							| 11 |  | nfcv |  |-  F/_ j i | 
						
							| 12 | 1 11 | nffv |  |-  F/_ j ( F ` i ) | 
						
							| 13 | 7 10 12 | nfov |  |-  F/_ j ( ( F ` l ) - ( F ` i ) ) | 
						
							| 14 | 9 13 | nffv |  |-  F/_ j ( abs ` ( ( F ` l ) - ( F ` i ) ) ) | 
						
							| 15 |  | nfcv |  |-  F/_ j < | 
						
							| 16 |  | nfcv |  |-  F/_ j x | 
						
							| 17 | 14 15 16 | nfbr |  |-  F/ j ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x | 
						
							| 18 | 8 17 | nfan |  |-  F/ j ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) | 
						
							| 19 | 5 18 | nfralw |  |-  F/ j A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) | 
						
							| 20 |  | nfv |  |-  F/ i A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) | 
						
							| 21 |  | nfcv |  |-  F/_ k l | 
						
							| 22 | 2 21 | nffv |  |-  F/_ k ( F ` l ) | 
						
							| 23 | 22 | nfel1 |  |-  F/ k ( F ` l ) e. CC | 
						
							| 24 |  | nfcv |  |-  F/_ k abs | 
						
							| 25 |  | nfcv |  |-  F/_ k - | 
						
							| 26 |  | nfcv |  |-  F/_ k i | 
						
							| 27 | 2 26 | nffv |  |-  F/_ k ( F ` i ) | 
						
							| 28 | 22 25 27 | nfov |  |-  F/_ k ( ( F ` l ) - ( F ` i ) ) | 
						
							| 29 | 24 28 | nffv |  |-  F/_ k ( abs ` ( ( F ` l ) - ( F ` i ) ) ) | 
						
							| 30 |  | nfcv |  |-  F/_ k < | 
						
							| 31 |  | nfcv |  |-  F/_ k x | 
						
							| 32 | 29 30 31 | nfbr |  |-  F/ k ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x | 
						
							| 33 | 23 32 | nfan |  |-  F/ k ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) | 
						
							| 34 |  | nfv |  |-  F/ l ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) | 
						
							| 35 |  | fveq2 |  |-  ( l = k -> ( F ` l ) = ( F ` k ) ) | 
						
							| 36 | 35 | eleq1d |  |-  ( l = k -> ( ( F ` l ) e. CC <-> ( F ` k ) e. CC ) ) | 
						
							| 37 | 35 | fvoveq1d |  |-  ( l = k -> ( abs ` ( ( F ` l ) - ( F ` i ) ) ) = ( abs ` ( ( F ` k ) - ( F ` i ) ) ) ) | 
						
							| 38 | 37 | breq1d |  |-  ( l = k -> ( ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) ) | 
						
							| 39 | 36 38 | anbi12d |  |-  ( l = k -> ( ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) ) ) | 
						
							| 40 | 33 34 39 | cbvralw |  |-  ( A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) ) | 
						
							| 41 |  | fveq2 |  |-  ( i = j -> ( ZZ>= ` i ) = ( ZZ>= ` j ) ) | 
						
							| 42 |  | fveq2 |  |-  ( i = j -> ( F ` i ) = ( F ` j ) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( i = j -> ( ( F ` k ) - ( F ` i ) ) = ( ( F ` k ) - ( F ` j ) ) ) | 
						
							| 44 | 43 | fveq2d |  |-  ( i = j -> ( abs ` ( ( F ` k ) - ( F ` i ) ) ) = ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) | 
						
							| 45 | 44 | breq1d |  |-  ( i = j -> ( ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) | 
						
							| 46 | 45 | anbi2d |  |-  ( i = j -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) | 
						
							| 47 | 41 46 | raleqbidv |  |-  ( i = j -> ( A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) | 
						
							| 48 | 40 47 | bitrid |  |-  ( i = j -> ( A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) | 
						
							| 49 | 19 20 48 | cbvrexw |  |-  ( E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) | 
						
							| 50 | 49 | ralbii |  |-  ( A. x e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) | 
						
							| 51 | 4 50 | bitrdi |  |-  ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) |