Metamath Proof Explorer


Theorem caucvgbf

Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of Gleason p. 180. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses caucvgbf.1
|- F/_ j F
caucvgbf.2
|- F/_ k F
caucvgbf.3
|- Z = ( ZZ>= ` M )
Assertion caucvgbf
|- ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) )

Proof

Step Hyp Ref Expression
1 caucvgbf.1
 |-  F/_ j F
2 caucvgbf.2
 |-  F/_ k F
3 caucvgbf.3
 |-  Z = ( ZZ>= ` M )
4 3 caucvgb
 |-  ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) ) )
5 nfcv
 |-  F/_ j ( ZZ>= ` i )
6 nfcv
 |-  F/_ j l
7 1 6 nffv
 |-  F/_ j ( F ` l )
8 7 nfel1
 |-  F/ j ( F ` l ) e. CC
9 nfcv
 |-  F/_ j abs
10 nfcv
 |-  F/_ j -
11 nfcv
 |-  F/_ j i
12 1 11 nffv
 |-  F/_ j ( F ` i )
13 7 10 12 nfov
 |-  F/_ j ( ( F ` l ) - ( F ` i ) )
14 9 13 nffv
 |-  F/_ j ( abs ` ( ( F ` l ) - ( F ` i ) ) )
15 nfcv
 |-  F/_ j <
16 nfcv
 |-  F/_ j x
17 14 15 16 nfbr
 |-  F/ j ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x
18 8 17 nfan
 |-  F/ j ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x )
19 5 18 nfralw
 |-  F/ j A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x )
20 nfv
 |-  F/ i A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x )
21 nfcv
 |-  F/_ k l
22 2 21 nffv
 |-  F/_ k ( F ` l )
23 22 nfel1
 |-  F/ k ( F ` l ) e. CC
24 nfcv
 |-  F/_ k abs
25 nfcv
 |-  F/_ k -
26 nfcv
 |-  F/_ k i
27 2 26 nffv
 |-  F/_ k ( F ` i )
28 22 25 27 nfov
 |-  F/_ k ( ( F ` l ) - ( F ` i ) )
29 24 28 nffv
 |-  F/_ k ( abs ` ( ( F ` l ) - ( F ` i ) ) )
30 nfcv
 |-  F/_ k <
31 nfcv
 |-  F/_ k x
32 29 30 31 nfbr
 |-  F/ k ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x
33 23 32 nfan
 |-  F/ k ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x )
34 nfv
 |-  F/ l ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x )
35 fveq2
 |-  ( l = k -> ( F ` l ) = ( F ` k ) )
36 35 eleq1d
 |-  ( l = k -> ( ( F ` l ) e. CC <-> ( F ` k ) e. CC ) )
37 35 fvoveq1d
 |-  ( l = k -> ( abs ` ( ( F ` l ) - ( F ` i ) ) ) = ( abs ` ( ( F ` k ) - ( F ` i ) ) ) )
38 37 breq1d
 |-  ( l = k -> ( ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) )
39 36 38 anbi12d
 |-  ( l = k -> ( ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) ) )
40 33 34 39 cbvralw
 |-  ( A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) )
41 fveq2
 |-  ( i = j -> ( ZZ>= ` i ) = ( ZZ>= ` j ) )
42 fveq2
 |-  ( i = j -> ( F ` i ) = ( F ` j ) )
43 42 oveq2d
 |-  ( i = j -> ( ( F ` k ) - ( F ` i ) ) = ( ( F ` k ) - ( F ` j ) ) )
44 43 fveq2d
 |-  ( i = j -> ( abs ` ( ( F ` k ) - ( F ` i ) ) ) = ( abs ` ( ( F ` k ) - ( F ` j ) ) ) )
45 44 breq1d
 |-  ( i = j -> ( ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) )
46 45 anbi2d
 |-  ( i = j -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) )
47 41 46 raleqbidv
 |-  ( i = j -> ( A. k e. ( ZZ>= ` i ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` i ) ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) )
48 40 47 bitrid
 |-  ( i = j -> ( A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) )
49 19 20 48 cbvrexw
 |-  ( E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) )
50 49 ralbii
 |-  ( A. x e. RR+ E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) e. CC /\ ( abs ` ( ( F ` l ) - ( F ` i ) ) ) < x ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) )
51 4 50 bitrdi
 |-  ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) )