Step |
Hyp |
Ref |
Expression |
1 |
|
caucvgbf.1 |
⊢ Ⅎ 𝑗 𝐹 |
2 |
|
caucvgbf.2 |
⊢ Ⅎ 𝑘 𝐹 |
3 |
|
caucvgbf.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
3
|
caucvgb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ℤ≥ ‘ 𝑖 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑙 |
7 |
1 6
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) |
8 |
7
|
nfel1 |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) ∈ ℂ |
9 |
|
nfcv |
⊢ Ⅎ 𝑗 abs |
10 |
|
nfcv |
⊢ Ⅎ 𝑗 − |
11 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑖 |
12 |
1 11
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑖 ) |
13 |
7 10 12
|
nfov |
⊢ Ⅎ 𝑗 ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) |
14 |
9 13
|
nffv |
⊢ Ⅎ 𝑗 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑗 < |
16 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
17 |
14 15 16
|
nfbr |
⊢ Ⅎ 𝑗 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 |
18 |
8 17
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) |
19 |
5 18
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) |
20 |
|
nfv |
⊢ Ⅎ 𝑖 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑙 |
22 |
2 21
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) |
23 |
22
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) ∈ ℂ |
24 |
|
nfcv |
⊢ Ⅎ 𝑘 abs |
25 |
|
nfcv |
⊢ Ⅎ 𝑘 − |
26 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑖 |
27 |
2 26
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑖 ) |
28 |
22 25 27
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) |
29 |
24 28
|
nffv |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) |
30 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
31 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
32 |
29 30 31
|
nfbr |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 |
33 |
23 32
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) |
34 |
|
nfv |
⊢ Ⅎ 𝑙 ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) |
35 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑘 ) ) |
36 |
35
|
eleq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
37 |
35
|
fvoveq1d |
⊢ ( 𝑙 = 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) ) |
38 |
37
|
breq1d |
⊢ ( 𝑙 = 𝑘 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) |
39 |
36 38
|
anbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) ) |
40 |
33 34 39
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
42 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑗 ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) |
44 |
43
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
45 |
44
|
breq1d |
⊢ ( 𝑖 = 𝑗 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
46 |
45
|
anbi2d |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
47 |
41 46
|
raleqbidv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
48 |
40 47
|
bitrid |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
49 |
19 20 48
|
cbvrexw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
50 |
49
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑙 ) − ( 𝐹 ‘ 𝑖 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
51 |
4 50
|
bitrdi |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ dom ⇝ ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |