| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caucvgbf.1 | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 2 |  | caucvgbf.2 | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 3 |  | caucvgbf.3 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 | 3 | caucvgb | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ∈  dom   ⇝   ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) ) ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑗 ( ℤ≥ ‘ 𝑖 ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑗 𝑙 | 
						
							| 7 | 1 6 | nffv | ⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) | 
						
							| 8 | 7 | nfel1 | ⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 )  ∈  ℂ | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑗 abs | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑗  − | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑗 𝑖 | 
						
							| 12 | 1 11 | nffv | ⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑖 ) | 
						
							| 13 | 7 10 12 | nfov | ⊢ Ⅎ 𝑗 ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 14 | 9 13 | nffv | ⊢ Ⅎ 𝑗 ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑗  < | 
						
							| 16 |  | nfcv | ⊢ Ⅎ 𝑗 𝑥 | 
						
							| 17 | 14 15 16 | nfbr | ⊢ Ⅎ 𝑗 ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 | 
						
							| 18 | 8 17 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) | 
						
							| 19 | 5 18 | nfralw | ⊢ Ⅎ 𝑗 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑖 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑘 𝑙 | 
						
							| 22 | 2 21 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) | 
						
							| 23 | 22 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 )  ∈  ℂ | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑘 abs | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑘  − | 
						
							| 26 |  | nfcv | ⊢ Ⅎ 𝑘 𝑖 | 
						
							| 27 | 2 26 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑖 ) | 
						
							| 28 | 22 25 27 | nfov | ⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 29 | 24 28 | nffv | ⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑘  < | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 32 | 29 30 31 | nfbr | ⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 | 
						
							| 33 | 23 32 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑙 ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑙  =  𝑘  →  ( 𝐹 ‘ 𝑙 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 36 | 35 | eleq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 37 | 35 | fvoveq1d | ⊢ ( 𝑙  =  𝑘  →  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 38 | 37 | breq1d | ⊢ ( 𝑙  =  𝑘  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) ) | 
						
							| 39 | 36 38 | anbi12d | ⊢ ( 𝑙  =  𝑘  →  ( ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) ) ) | 
						
							| 40 | 33 34 39 | cbvralw | ⊢ ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 ) ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( ℤ≥ ‘ 𝑖 )  =  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) )  =  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( 𝑖  =  𝑗  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 45 | 44 | breq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 46 | 45 | anbi2d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 47 | 41 46 | raleqbidv | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 48 | 40 47 | bitrid | ⊢ ( 𝑖  =  𝑗  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 49 | 19 20 48 | cbvrexw | ⊢ ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 50 | 49 | ralbii | ⊢ ( ∀ 𝑥  ∈  ℝ+ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑙 )  −  ( 𝐹 ‘ 𝑖 ) ) )  <  𝑥 )  ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 51 | 4 50 | bitrdi | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ∈  dom   ⇝   ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) |