| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvgcau.1 | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 2 |  | cvgcau.2 | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 3 |  | cvgcau.3 | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 4 |  | cvgcau.4 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 5 |  | cvgcau.5 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 6 |  | cvgcau.6 | ⊢ ( 𝜑  →  𝐹  ∈  dom   ⇝  ) | 
						
							| 7 |  | cvgcau.7 | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝑥  =  𝑋  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) | 
						
							| 9 | 8 | anbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  ↔  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) ) | 
						
							| 10 | 9 | rexralbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 )  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) ) | 
						
							| 11 | 5 3 | eluzelz2d | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 12 | 1 2 5 | caucvgbf | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ∈  dom   ⇝   ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 13 | 11 4 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  dom   ⇝   ↔  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) ) | 
						
							| 14 | 6 13 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑥 ) ) | 
						
							| 15 | 10 14 7 | rspcdva | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) |