Metamath Proof Explorer


Theorem cvgcau

Description: A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses cvgcau.1 _jF
cvgcau.2 _kF
cvgcau.3 φMZ
cvgcau.4 φFV
cvgcau.5 Z=M
cvgcau.6 φFdom
cvgcau.7 φX+
Assertion cvgcau φjZkjFkFkFj<X

Proof

Step Hyp Ref Expression
1 cvgcau.1 _jF
2 cvgcau.2 _kF
3 cvgcau.3 φMZ
4 cvgcau.4 φFV
5 cvgcau.5 Z=M
6 cvgcau.6 φFdom
7 cvgcau.7 φX+
8 breq2 x=XFkFj<xFkFj<X
9 8 anbi2d x=XFkFkFj<xFkFkFj<X
10 9 rexralbidv x=XjZkjFkFkFj<xjZkjFkFkFj<X
11 5 3 eluzelz2d φM
12 1 2 5 caucvgbf MFVFdomx+jZkjFkFkFj<x
13 11 4 12 syl2anc φFdomx+jZkjFkFkFj<x
14 6 13 mpbid φx+jZkjFkFkFj<x
15 10 14 7 rspcdva φjZkjFkFkFj<X