| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvgcau.1 |  |-  F/_ j F | 
						
							| 2 |  | cvgcau.2 |  |-  F/_ k F | 
						
							| 3 |  | cvgcau.3 |  |-  ( ph -> M e. Z ) | 
						
							| 4 |  | cvgcau.4 |  |-  ( ph -> F e. V ) | 
						
							| 5 |  | cvgcau.5 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 6 |  | cvgcau.6 |  |-  ( ph -> F e. dom ~~> ) | 
						
							| 7 |  | cvgcau.7 |  |-  ( ph -> X e. RR+ ) | 
						
							| 8 |  | breq2 |  |-  ( x = X -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) | 
						
							| 9 | 8 | anbi2d |  |-  ( x = X -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) ) | 
						
							| 10 | 9 | rexralbidv |  |-  ( x = X -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) ) | 
						
							| 11 | 5 3 | eluzelz2d |  |-  ( ph -> M e. ZZ ) | 
						
							| 12 | 1 2 5 | caucvgbf |  |-  ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) | 
						
							| 13 | 11 4 12 | syl2anc |  |-  ( ph -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) | 
						
							| 14 | 6 13 | mpbid |  |-  ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) | 
						
							| 15 | 10 14 7 | rspcdva |  |-  ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) |