Metamath Proof Explorer


Theorem cvgcau

Description: A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses cvgcau.1
|- F/_ j F
cvgcau.2
|- F/_ k F
cvgcau.3
|- ( ph -> M e. Z )
cvgcau.4
|- ( ph -> F e. V )
cvgcau.5
|- Z = ( ZZ>= ` M )
cvgcau.6
|- ( ph -> F e. dom ~~> )
cvgcau.7
|- ( ph -> X e. RR+ )
Assertion cvgcau
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) )

Proof

Step Hyp Ref Expression
1 cvgcau.1
 |-  F/_ j F
2 cvgcau.2
 |-  F/_ k F
3 cvgcau.3
 |-  ( ph -> M e. Z )
4 cvgcau.4
 |-  ( ph -> F e. V )
5 cvgcau.5
 |-  Z = ( ZZ>= ` M )
6 cvgcau.6
 |-  ( ph -> F e. dom ~~> )
7 cvgcau.7
 |-  ( ph -> X e. RR+ )
8 breq2
 |-  ( x = X -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) )
9 8 anbi2d
 |-  ( x = X -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) )
10 9 rexralbidv
 |-  ( x = X -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) )
11 5 3 eluzelz2d
 |-  ( ph -> M e. ZZ )
12 1 2 5 caucvgbf
 |-  ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) )
13 11 4 12 syl2anc
 |-  ( ph -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) )
14 6 13 mpbid
 |-  ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) )
15 10 14 7 rspcdva
 |-  ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) )