Step |
Hyp |
Ref |
Expression |
1 |
|
cvgcau.1 |
|- F/_ j F |
2 |
|
cvgcau.2 |
|- F/_ k F |
3 |
|
cvgcau.3 |
|- ( ph -> M e. Z ) |
4 |
|
cvgcau.4 |
|- ( ph -> F e. V ) |
5 |
|
cvgcau.5 |
|- Z = ( ZZ>= ` M ) |
6 |
|
cvgcau.6 |
|- ( ph -> F e. dom ~~> ) |
7 |
|
cvgcau.7 |
|- ( ph -> X e. RR+ ) |
8 |
|
breq2 |
|- ( x = X -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x <-> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) |
9 |
8
|
anbi2d |
|- ( x = X -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) ) |
10 |
9
|
rexralbidv |
|- ( x = X -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) ) |
11 |
5 3
|
eluzelz2d |
|- ( ph -> M e. ZZ ) |
12 |
1 2 5
|
caucvgbf |
|- ( ( M e. ZZ /\ F e. V ) -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) |
13 |
11 4 12
|
syl2anc |
|- ( ph -> ( F e. dom ~~> <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) ) |
14 |
6 13
|
mpbid |
|- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
15 |
10 14 7
|
rspcdva |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) |