| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvgcaule.1 |  |-  F/_ j F | 
						
							| 2 |  | cvgcaule.2 |  |-  F/_ k F | 
						
							| 3 |  | cvgcaule.3 |  |-  ( ph -> M e. Z ) | 
						
							| 4 |  | cvgcaule.4 |  |-  ( ph -> F e. V ) | 
						
							| 5 |  | cvgcaule.5 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 6 |  | cvgcaule.6 |  |-  ( ph -> F e. dom ~~> ) | 
						
							| 7 |  | cvgcaule.7 |  |-  ( ph -> X e. RR+ ) | 
						
							| 8 | 1 2 3 4 5 6 7 | cvgcau |  |-  ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) | 
						
							| 9 |  | nfv |  |-  F/ k ( X e. RR+ /\ j e. Z ) | 
						
							| 10 |  | nfra1 |  |-  F/ k A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) | 
						
							| 11 | 9 10 | nfan |  |-  F/ k ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) | 
						
							| 12 |  | rspa |  |-  ( ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) | 
						
							| 13 | 12 | simpld |  |-  ( ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. CC ) | 
						
							| 14 | 13 | adantll |  |-  ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. CC ) | 
						
							| 15 | 13 | adantll |  |-  ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. CC ) | 
						
							| 16 | 5 | uzid3 |  |-  ( j e. Z -> j e. ( ZZ>= ` j ) ) | 
						
							| 17 |  | nfcv |  |-  F/_ k j | 
						
							| 18 | 2 17 | nffv |  |-  F/_ k ( F ` j ) | 
						
							| 19 | 18 | nfel1 |  |-  F/ k ( F ` j ) e. CC | 
						
							| 20 |  | nfcv |  |-  F/_ k abs | 
						
							| 21 |  | nfcv |  |-  F/_ k - | 
						
							| 22 | 18 21 18 | nfov |  |-  F/_ k ( ( F ` j ) - ( F ` j ) ) | 
						
							| 23 | 20 22 | nffv |  |-  F/_ k ( abs ` ( ( F ` j ) - ( F ` j ) ) ) | 
						
							| 24 |  | nfcv |  |-  F/_ k < | 
						
							| 25 |  | nfcv |  |-  F/_ k X | 
						
							| 26 | 23 24 25 | nfbr |  |-  F/ k ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X | 
						
							| 27 | 19 26 | nfan |  |-  F/ k ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) | 
						
							| 28 |  | fveq2 |  |-  ( k = j -> ( F ` k ) = ( F ` j ) ) | 
						
							| 29 | 28 | eleq1d |  |-  ( k = j -> ( ( F ` k ) e. CC <-> ( F ` j ) e. CC ) ) | 
						
							| 30 | 28 | fvoveq1d |  |-  ( k = j -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) = ( abs ` ( ( F ` j ) - ( F ` j ) ) ) ) | 
						
							| 31 | 30 | breq1d |  |-  ( k = j -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X <-> ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) | 
						
							| 32 | 29 31 | anbi12d |  |-  ( k = j -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) <-> ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) ) | 
						
							| 33 | 27 32 | rspc |  |-  ( j e. ( ZZ>= ` j ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) -> ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) ) | 
						
							| 34 | 16 33 | syl |  |-  ( j e. Z -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) -> ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) -> ( ( F ` j ) e. CC /\ ( abs ` ( ( F ` j ) - ( F ` j ) ) ) < X ) ) | 
						
							| 36 | 35 | simpld |  |-  ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) -> ( F ` j ) e. CC ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` j ) e. CC ) | 
						
							| 38 | 15 37 | subcld |  |-  ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) - ( F ` j ) ) e. CC ) | 
						
							| 39 | 38 | abscld |  |-  ( ( ( j e. Z /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) e. RR ) | 
						
							| 40 | 39 | adantlll |  |-  ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) e. RR ) | 
						
							| 41 |  | simplll |  |-  ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> X e. RR+ ) | 
						
							| 42 | 41 | rpred |  |-  ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> X e. RR ) | 
						
							| 43 | 12 | adantll |  |-  ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) | 
						
							| 44 | 43 | simprd |  |-  ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) | 
						
							| 45 | 40 42 44 | ltled |  |-  ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) | 
						
							| 46 | 14 45 | jca |  |-  ( ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) | 
						
							| 47 | 11 46 | ralrimia |  |-  ( ( ( X e. RR+ /\ j e. Z ) /\ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) | 
						
							| 48 | 47 | ex |  |-  ( ( X e. RR+ /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) ) | 
						
							| 49 | 48 | reximdva |  |-  ( X e. RR+ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < X ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) ) | 
						
							| 50 | 7 8 49 | sylc |  |-  ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) <_ X ) ) |