| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvgcaule.1 | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 2 |  | cvgcaule.2 | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 3 |  | cvgcaule.3 | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 4 |  | cvgcaule.4 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 5 |  | cvgcaule.5 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 6 |  | cvgcaule.6 | ⊢ ( 𝜑  →  𝐹  ∈  dom   ⇝  ) | 
						
							| 7 |  | cvgcaule.7 | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 8 | 1 2 3 4 5 6 7 | cvgcau | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 ) | 
						
							| 10 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) | 
						
							| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) | 
						
							| 12 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 14 | 13 | adantll | ⊢ ( ( ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 15 | 13 | adantll | ⊢ ( ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 16 | 5 | uzid3 | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑘 𝑗 | 
						
							| 18 | 2 17 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) | 
						
							| 19 | 18 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 )  ∈  ℂ | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑘 abs | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑘  − | 
						
							| 22 | 18 21 18 | nfov | ⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 23 | 20 22 | nffv | ⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑘  < | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑘 𝑋 | 
						
							| 26 | 23 24 25 | nfbr | ⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 | 
						
							| 27 | 19 26 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 29 | 28 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) ) | 
						
							| 30 | 28 | fvoveq1d | ⊢ ( 𝑘  =  𝑗  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 31 | 30 | breq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) | 
						
							| 32 | 29 31 | anbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 )  ↔  ( ( 𝐹 ‘ 𝑗 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) ) | 
						
							| 33 | 27 32 | rspc | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 )  →  ( ( 𝐹 ‘ 𝑗 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) ) | 
						
							| 34 | 16 33 | syl | ⊢ ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 )  →  ( ( 𝐹 ‘ 𝑗 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  →  ( ( 𝐹 ‘ 𝑗 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑗 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) | 
						
							| 36 | 35 | simpld | ⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 38 | 15 37 | subcld | ⊢ ( ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 39 | 38 | abscld | ⊢ ( ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 40 | 39 | adantlll | ⊢ ( ( ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 41 |  | simplll | ⊢ ( ( ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑋  ∈  ℝ+ ) | 
						
							| 42 | 41 | rpred | ⊢ ( ( ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑋  ∈  ℝ ) | 
						
							| 43 | 12 | adantll | ⊢ ( ( ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) ) | 
						
							| 44 | 43 | simprd | ⊢ ( ( ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) | 
						
							| 45 | 40 42 44 | ltled | ⊢ ( ( ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  ≤  𝑋 ) | 
						
							| 46 | 14 45 | jca | ⊢ ( ( ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  ≤  𝑋 ) ) | 
						
							| 47 | 11 46 | ralrimia | ⊢ ( ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  ≤  𝑋 ) ) | 
						
							| 48 | 47 | ex | ⊢ ( ( 𝑋  ∈  ℝ+  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  ≤  𝑋 ) ) ) | 
						
							| 49 | 48 | reximdva | ⊢ ( 𝑋  ∈  ℝ+  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  <  𝑋 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  ≤  𝑋 ) ) ) | 
						
							| 50 | 7 8 49 | sylc | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐹 ‘ 𝑗 ) ) )  ≤  𝑋 ) ) |