Step |
Hyp |
Ref |
Expression |
1 |
|
cvgcaule.1 |
⊢ Ⅎ 𝑗 𝐹 |
2 |
|
cvgcaule.2 |
⊢ Ⅎ 𝑘 𝐹 |
3 |
|
cvgcaule.3 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
4 |
|
cvgcaule.4 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
5 |
|
cvgcaule.5 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
6 |
|
cvgcaule.6 |
⊢ ( 𝜑 → 𝐹 ∈ dom ⇝ ) |
7 |
|
cvgcaule.7 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
8 |
1 2 3 4 5 6 7
|
cvgcau |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
9 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) |
10 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) |
11 |
9 10
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
12 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
13 |
12
|
simpld |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
14 |
13
|
adantll |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
15 |
13
|
adantll |
⊢ ( ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
16 |
5
|
uzid3 |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
18 |
2 17
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
19 |
18
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) ∈ ℂ |
20 |
|
nfcv |
⊢ Ⅎ 𝑘 abs |
21 |
|
nfcv |
⊢ Ⅎ 𝑘 − |
22 |
18 21 18
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) |
23 |
20 22
|
nffv |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
25 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
26 |
23 24 25
|
nfbr |
⊢ Ⅎ 𝑘 ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 |
27 |
19 26
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) |
28 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) |
30 |
28
|
fvoveq1d |
⊢ ( 𝑘 = 𝑗 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
31 |
30
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
32 |
29 31
|
anbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
33 |
27 32
|
rspc |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
34 |
16 33
|
syl |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ) |
35 |
34
|
imp |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
36 |
35
|
simpld |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
38 |
15 37
|
subcld |
⊢ ( ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
39 |
38
|
abscld |
⊢ ( ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
40 |
39
|
adantlll |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
41 |
|
simplll |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑋 ∈ ℝ+ ) |
42 |
41
|
rpred |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑋 ∈ ℝ ) |
43 |
12
|
adantll |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) |
44 |
43
|
simprd |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) |
45 |
40 42 44
|
ltled |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) |
46 |
14 45
|
jca |
⊢ ( ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) |
47 |
11 46
|
ralrimia |
⊢ ( ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) |
48 |
47
|
ex |
⊢ ( ( 𝑋 ∈ ℝ+ ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) ) |
49 |
48
|
reximdva |
⊢ ( 𝑋 ∈ ℝ+ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑋 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) ) |
50 |
7 8 49
|
sylc |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑋 ) ) |