| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexanuz2nf.1 | ⊢ 𝑍  =  ℕ0 | 
						
							| 2 |  | rexanuz2nf.2 | ⊢ ( 𝜑  ↔  ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) ) | 
						
							| 3 |  | rexanuz2nf.3 | ⊢ ( 𝜓  ↔  0  <  𝑘 ) | 
						
							| 4 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 5 |  | nn0ge0 | ⊢ ( 𝑘  ∈  ℕ0  →  0  ≤  𝑘 ) | 
						
							| 6 | 5 | rgen | ⊢ ∀ 𝑘  ∈  ℕ0 0  ≤  𝑘 | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑗  =  0  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 0 ) ) | 
						
							| 8 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 9 | 7 8 | eqtr4di | ⊢ ( 𝑗  =  0  →  ( ℤ≥ ‘ 𝑗 )  =  ℕ0 ) | 
						
							| 10 | 9 | raleqdv | ⊢ ( 𝑗  =  0  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 )  ↔  ∀ 𝑘  ∈  ℕ0 ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) ) ) | 
						
							| 11 | 5 | ad2antlr | ⊢ ( ( ( 𝑗  =  0  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) )  →  0  ≤  𝑘 ) | 
						
							| 12 |  | simpll | ⊢ ( ( ( 𝑗  =  0  ∧  𝑘  ∈  ℕ0 )  ∧  0  ≤  𝑘 )  →  𝑗  =  0 ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝑗  =  0  ∧  𝑘  ∈  ℕ0 )  ∧  0  ≤  𝑘 )  →  0  ≤  𝑘 ) | 
						
							| 14 | 12 13 | eqbrtrd | ⊢ ( ( ( 𝑗  =  0  ∧  𝑘  ∈  ℕ0 )  ∧  0  ≤  𝑘 )  →  𝑗  ≤  𝑘 ) | 
						
							| 15 | 12 14 | jca | ⊢ ( ( ( 𝑗  =  0  ∧  𝑘  ∈  ℕ0 )  ∧  0  ≤  𝑘 )  →  ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) ) | 
						
							| 16 | 11 15 | impbida | ⊢ ( ( 𝑗  =  0  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 )  ↔  0  ≤  𝑘 ) ) | 
						
							| 17 | 16 | ralbidva | ⊢ ( 𝑗  =  0  →  ( ∀ 𝑘  ∈  ℕ0 ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 )  ↔  ∀ 𝑘  ∈  ℕ0 0  ≤  𝑘 ) ) | 
						
							| 18 | 10 17 | bitrd | ⊢ ( 𝑗  =  0  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 )  ↔  ∀ 𝑘  ∈  ℕ0 0  ≤  𝑘 ) ) | 
						
							| 19 | 18 | rspcev | ⊢ ( ( 0  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ℕ0 0  ≤  𝑘 )  →  ∃ 𝑗  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) ) | 
						
							| 20 | 4 6 19 | mp2an | ⊢ ∃ 𝑗  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑗 ℕ0 | 
						
							| 22 | 1 21 | nfcxfr | ⊢ Ⅎ 𝑗 𝑍 | 
						
							| 23 | 22 21 1 | rexeqif | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 )  ↔  ∃ 𝑗  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) ) | 
						
							| 24 | 20 23 | mpbir | ⊢ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) | 
						
							| 25 | 2 | ralbii | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) ) | 
						
							| 26 | 25 | rexbii | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 ) ) | 
						
							| 27 | 24 26 | mpbir | ⊢ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 | 
						
							| 28 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 29 |  | nngt0 | ⊢ ( 𝑘  ∈  ℕ  →  0  <  𝑘 ) | 
						
							| 30 | 29 | rgen | ⊢ ∀ 𝑘  ∈  ℕ 0  <  𝑘 | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( ℤ≥ ‘ 𝑗 )  =  ( ℤ≥ ‘ 1 ) ) | 
						
							| 32 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 33 | 31 32 | eqtr4di | ⊢ ( 𝑗  =  1  →  ( ℤ≥ ‘ 𝑗 )  =  ℕ ) | 
						
							| 34 | 33 | raleqdv | ⊢ ( 𝑗  =  1  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 0  <  𝑘  ↔  ∀ 𝑘  ∈  ℕ 0  <  𝑘 ) ) | 
						
							| 35 | 34 | rspcev | ⊢ ( ( 1  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ℕ 0  <  𝑘 )  →  ∃ 𝑗  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 0  <  𝑘 ) | 
						
							| 36 | 28 30 35 | mp2an | ⊢ ∃ 𝑗  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 0  <  𝑘 | 
						
							| 37 | 22 21 1 | rexeqif | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 0  <  𝑘  ↔  ∃ 𝑗  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 0  <  𝑘 ) | 
						
							| 38 | 36 37 | mpbir | ⊢ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 0  <  𝑘 | 
						
							| 39 | 3 | ralbii | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜓  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 0  <  𝑘 ) | 
						
							| 40 | 39 | rexbii | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜓  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 0  <  𝑘 ) | 
						
							| 41 | 38 40 | mpbir | ⊢ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜓 | 
						
							| 42 | 27 41 | pm3.2i | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ∧  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜓 ) | 
						
							| 43 |  | nfv | ⊢ Ⅎ 𝑘 ¬  ( ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 )  ∧  0  <  𝑗 ) | 
						
							| 44 |  | nfcv | ⊢ Ⅎ 𝑘 𝑗 | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑘 ( ℤ≥ ‘ 𝑗 ) | 
						
							| 46 | 8 | uzid3 | ⊢ ( 𝑗  ∈  ℕ0  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  𝑗  =  0 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 48 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 49 | 48 | ltnri | ⊢ ¬  0  <  0 | 
						
							| 50 | 49 | a1i | ⊢ ( 𝑗  =  0  →  ¬  0  <  0 ) | 
						
							| 51 |  | eqcom | ⊢ ( 𝑗  =  0  ↔  0  =  𝑗 ) | 
						
							| 52 | 51 | biimpi | ⊢ ( 𝑗  =  0  →  0  =  𝑗 ) | 
						
							| 53 | 50 52 | brneqtrd | ⊢ ( 𝑗  =  0  →  ¬  0  <  𝑗 ) | 
						
							| 54 | 53 | intnand | ⊢ ( 𝑗  =  0  →  ¬  ( ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 )  ∧  0  <  𝑗 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  𝑗  =  0 )  →  ¬  ( ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 )  ∧  0  <  𝑗 ) ) | 
						
							| 56 |  | breq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑗  ≤  𝑘  ↔  𝑗  ≤  𝑗 ) ) | 
						
							| 57 | 56 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑗  =  0  ∧  𝑗  ≤  𝑘 )  ↔  ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 ) ) ) | 
						
							| 58 | 2 57 | bitrid | ⊢ ( 𝑘  =  𝑗  →  ( 𝜑  ↔  ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 ) ) ) | 
						
							| 59 |  | breq2 | ⊢ ( 𝑘  =  𝑗  →  ( 0  <  𝑘  ↔  0  <  𝑗 ) ) | 
						
							| 60 | 3 59 | bitrid | ⊢ ( 𝑘  =  𝑗  →  ( 𝜓  ↔  0  <  𝑗 ) ) | 
						
							| 61 | 58 60 | anbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 )  ∧  0  <  𝑗 ) ) ) | 
						
							| 62 | 61 | notbid | ⊢ ( 𝑘  =  𝑗  →  ( ¬  ( 𝜑  ∧  𝜓 )  ↔  ¬  ( ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 )  ∧  0  <  𝑗 ) ) ) | 
						
							| 63 | 43 44 45 47 55 62 | rspced | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  𝑗  =  0 )  →  ∃ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ¬  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 64 | 46 | adantr | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  =  0 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 65 |  | id | ⊢ ( ¬  𝑗  =  0  →  ¬  𝑗  =  0 ) | 
						
							| 66 | 65 | intnanrd | ⊢ ( ¬  𝑗  =  0  →  ¬  ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 ) ) | 
						
							| 67 | 66 | intnanrd | ⊢ ( ¬  𝑗  =  0  →  ¬  ( ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 )  ∧  0  <  𝑗 ) ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  =  0 )  →  ¬  ( ( 𝑗  =  0  ∧  𝑗  ≤  𝑗 )  ∧  0  <  𝑗 ) ) | 
						
							| 69 | 43 44 45 64 68 62 | rspced | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  ¬  𝑗  =  0 )  →  ∃ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ¬  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 70 | 63 69 | pm2.61dan | ⊢ ( 𝑗  ∈  ℕ0  →  ∃ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ¬  ( 𝜑  ∧  𝜓 ) ) | 
						
							| 71 |  | rexnal | ⊢ ( ∃ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ¬  ( 𝜑  ∧  𝜓 )  ↔  ¬  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 ) ) | 
						
							| 72 | 70 71 | sylib | ⊢ ( 𝑗  ∈  ℕ0  →  ¬  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 ) ) | 
						
							| 73 | 72 | nrex | ⊢ ¬  ∃ 𝑗  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 ) | 
						
							| 74 | 22 21 1 | rexeqif | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 )  ↔  ∃ 𝑗  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 ) ) | 
						
							| 75 | 73 74 | mtbir | ⊢ ¬  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 ) | 
						
							| 76 | 42 75 | pm3.2i | ⊢ ( ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ∧  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜓 )  ∧  ¬  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 ) ) | 
						
							| 77 |  | annim | ⊢ ( ( ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ∧  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜓 )  ∧  ¬  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 ) )  ↔  ¬  ( ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ∧  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜓 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 78 | 76 77 | mpbi | ⊢ ¬  ( ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ∧  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜓 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 ) ) | 
						
							| 79 | 78 | nimnbi2 | ⊢ ¬  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝜑  ∧  𝜓 )  ↔  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ∧  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |