Metamath Proof Explorer


Theorem rspced

Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rspced.1 𝑥 𝜒
rspced.2 𝑥 𝐴
rspced.3 𝑥 𝐵
rspced.4 ( 𝜑𝐴𝐵 )
rspced.5 ( 𝜑𝜒 )
rspced.6 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
Assertion rspced ( 𝜑 → ∃ 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 rspced.1 𝑥 𝜒
2 rspced.2 𝑥 𝐴
3 rspced.3 𝑥 𝐵
4 rspced.4 ( 𝜑𝐴𝐵 )
5 rspced.5 ( 𝜑𝜒 )
6 rspced.6 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
7 1 2 3 6 rspcef ( ( 𝐴𝐵𝜒 ) → ∃ 𝑥𝐵 𝜓 )
8 4 5 7 syl2anc ( 𝜑 → ∃ 𝑥𝐵 𝜓 )