Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution.
(Contributed by Glauco Siliprandi, 15-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
rspced.1 |
⊢ Ⅎ 𝑥 𝜒 |
|
|
rspced.2 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
rspced.3 |
⊢ Ⅎ 𝑥 𝐵 |
|
|
rspced.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
|
|
rspced.5 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
rspced.6 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
rspced |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspced.1 |
⊢ Ⅎ 𝑥 𝜒 |
2 |
|
rspced.2 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
rspced.3 |
⊢ Ⅎ 𝑥 𝐵 |
4 |
|
rspced.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
5 |
|
rspced.5 |
⊢ ( 𝜑 → 𝜒 ) |
6 |
|
rspced.6 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) |
7 |
1 2 3 6
|
rspcef |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜒 ) → ∃ 𝑥 ∈ 𝐵 𝜓 ) |
8 |
4 5 7
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜓 ) |