Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspced.1 | |- F/ x ch |
|
rspced.2 | |- F/_ x A |
||
rspced.3 | |- F/_ x B |
||
rspced.4 | |- ( ph -> A e. B ) |
||
rspced.5 | |- ( ph -> ch ) |
||
rspced.6 | |- ( x = A -> ( ps <-> ch ) ) |
||
Assertion | rspced | |- ( ph -> E. x e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspced.1 | |- F/ x ch |
|
2 | rspced.2 | |- F/_ x A |
|
3 | rspced.3 | |- F/_ x B |
|
4 | rspced.4 | |- ( ph -> A e. B ) |
|
5 | rspced.5 | |- ( ph -> ch ) |
|
6 | rspced.6 | |- ( x = A -> ( ps <-> ch ) ) |
|
7 | 1 2 3 6 | rspcef | |- ( ( A e. B /\ ch ) -> E. x e. B ps ) |
8 | 4 5 7 | syl2anc | |- ( ph -> E. x e. B ps ) |