Metamath Proof Explorer


Theorem rspced

Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rspced.1
|- F/ x ch
rspced.2
|- F/_ x A
rspced.3
|- F/_ x B
rspced.4
|- ( ph -> A e. B )
rspced.5
|- ( ph -> ch )
rspced.6
|- ( x = A -> ( ps <-> ch ) )
Assertion rspced
|- ( ph -> E. x e. B ps )

Proof

Step Hyp Ref Expression
1 rspced.1
 |-  F/ x ch
2 rspced.2
 |-  F/_ x A
3 rspced.3
 |-  F/_ x B
4 rspced.4
 |-  ( ph -> A e. B )
5 rspced.5
 |-  ( ph -> ch )
6 rspced.6
 |-  ( x = A -> ( ps <-> ch ) )
7 1 2 3 6 rspcef
 |-  ( ( A e. B /\ ch ) -> E. x e. B ps )
8 4 5 7 syl2anc
 |-  ( ph -> E. x e. B ps )