Metamath Proof Explorer


Theorem rspced

Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rspced.1 xχ
rspced.2 _xA
rspced.3 _xB
rspced.4 φAB
rspced.5 φχ
rspced.6 x=Aψχ
Assertion rspced φxBψ

Proof

Step Hyp Ref Expression
1 rspced.1 xχ
2 rspced.2 _xA
3 rspced.3 _xB
4 rspced.4 φAB
5 rspced.5 φχ
6 rspced.6 x=Aψχ
7 1 2 3 6 rspcef ABχxBψ
8 4 5 7 syl2anc φxBψ