Metamath Proof Explorer
Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
rexeqif.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
rexeqif.2 |
⊢ Ⅎ 𝑥 𝐵 |
|
|
rexeqif.3 |
⊢ 𝐴 = 𝐵 |
|
Assertion |
rexeqif |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexeqif.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
rexeqif.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
rexeqif.3 |
⊢ 𝐴 = 𝐵 |
4 |
1 2
|
rexeqf |
⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜑 ) |