Metamath Proof Explorer


Theorem rexeqif

Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rexeqif.1 𝑥 𝐴
rexeqif.2 𝑥 𝐵
rexeqif.3 𝐴 = 𝐵
Assertion rexeqif ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 rexeqif.1 𝑥 𝐴
2 rexeqif.2 𝑥 𝐵
3 rexeqif.3 𝐴 = 𝐵
4 1 2 rexeqf ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )
5 3 4 ax-mp ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 )