Metamath Proof Explorer


Theorem rexeqif

Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses rexeqif.1
|- F/_ x A
rexeqif.2
|- F/_ x B
rexeqif.3
|- A = B
Assertion rexeqif
|- ( E. x e. A ph <-> E. x e. B ph )

Proof

Step Hyp Ref Expression
1 rexeqif.1
 |-  F/_ x A
2 rexeqif.2
 |-  F/_ x B
3 rexeqif.3
 |-  A = B
4 1 2 rexeqf
 |-  ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) )
5 3 4 ax-mp
 |-  ( E. x e. A ph <-> E. x e. B ph )