Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rexeqif.1 | |- F/_ x A | |
| rexeqif.2 | |- F/_ x B | ||
| rexeqif.3 | |- A = B | ||
| Assertion | rexeqif | |- ( E. x e. A ph <-> E. x e. B ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexeqif.1 | |- F/_ x A | |
| 2 | rexeqif.2 | |- F/_ x B | |
| 3 | rexeqif.3 | |- A = B | |
| 4 | 1 2 | rexeqf | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) ) | 
| 5 | 3 4 | ax-mp | |- ( E. x e. A ph <-> E. x e. B ph ) |