Description: Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexeqif.1 | |- F/_ x A |
|
rexeqif.2 | |- F/_ x B |
||
rexeqif.3 | |- A = B |
||
Assertion | rexeqif | |- ( E. x e. A ph <-> E. x e. B ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeqif.1 | |- F/_ x A |
|
2 | rexeqif.2 | |- F/_ x B |
|
3 | rexeqif.3 | |- A = B |
|
4 | 1 2 | rexeqf | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) ) |
5 | 3 4 | ax-mp | |- ( E. x e. A ph <-> E. x e. B ph ) |