Metamath Proof Explorer
		
		
		
		Description:  Equality inference for restricted existential quantifier.  (Contributed by Glauco Siliprandi, 15-Feb-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rexeqif.1 |  | 
					
						|  |  | rexeqif.2 |  | 
					
						|  |  | rexeqif.3 |  | 
				
					|  | Assertion | rexeqif |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexeqif.1 |  | 
						
							| 2 |  | rexeqif.2 |  | 
						
							| 3 |  | rexeqif.3 |  | 
						
							| 4 | 1 2 | rexeqf |  | 
						
							| 5 | 3 4 | ax-mp |  |