| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimxrneun.1 |
|
| 2 |
|
pimxrneun.2 |
|
| 3 |
|
pimxrneun.3 |
|
| 4 |
|
nfrab1 |
|
| 5 |
|
nfrab1 |
|
| 6 |
4 5
|
nfun |
|
| 7 |
|
simpl |
|
| 8 |
|
simpr |
|
| 9 |
7 8
|
jca |
|
| 10 |
|
rabid |
|
| 11 |
9 10
|
sylibr |
|
| 12 |
11
|
adantll |
|
| 13 |
|
elun1 |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
3adantl3 |
|
| 16 |
|
3simpa |
|
| 17 |
16
|
adantr |
|
| 18 |
3
|
adantr |
|
| 19 |
18
|
3adantl3 |
|
| 20 |
2
|
adantr |
|
| 21 |
20
|
3adantl3 |
|
| 22 |
|
simpr |
|
| 23 |
19 21 22
|
xrnltled |
|
| 24 |
|
necom |
|
| 25 |
24
|
biimpi |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
3ad2antl3 |
|
| 28 |
19 21 23 27
|
xrleneltd |
|
| 29 |
|
id |
|
| 30 |
29
|
adantll |
|
| 31 |
|
rabid |
|
| 32 |
30 31
|
sylibr |
|
| 33 |
|
elun2 |
|
| 34 |
32 33
|
syl |
|
| 35 |
17 28 34
|
syl2anc |
|
| 36 |
15 35
|
pm2.61dan |
|
| 37 |
1 6 36
|
rabssd |
|
| 38 |
2
|
adantr |
|
| 39 |
3
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
38 39 40
|
xrltned |
|
| 42 |
41
|
ex |
|
| 43 |
1 42
|
ss2rabdf |
|
| 44 |
3
|
adantr |
|
| 45 |
2
|
adantr |
|
| 46 |
|
simpr |
|
| 47 |
44 45 46
|
xrgtned |
|
| 48 |
47
|
ex |
|
| 49 |
1 48
|
ss2rabdf |
|
| 50 |
43 49
|
unssd |
|
| 51 |
37 50
|
eqssd |
|