| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xltneg |
|- ( ( B e. RR* /\ A e. RR* ) -> ( B < A <-> -e A < -e B ) ) |
| 2 |
1
|
ancoms |
|- ( ( A e. RR* /\ B e. RR* ) -> ( B < A <-> -e A < -e B ) ) |
| 3 |
2
|
notbid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -. B < A <-> -. -e A < -e B ) ) |
| 4 |
|
xrlenlt |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -. B < A ) ) |
| 5 |
|
xnegcl |
|- ( B e. RR* -> -e B e. RR* ) |
| 6 |
|
xnegcl |
|- ( A e. RR* -> -e A e. RR* ) |
| 7 |
|
xrlenlt |
|- ( ( -e B e. RR* /\ -e A e. RR* ) -> ( -e B <_ -e A <-> -. -e A < -e B ) ) |
| 8 |
5 6 7
|
syl2anr |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e B <_ -e A <-> -. -e A < -e B ) ) |
| 9 |
3 4 8
|
3bitr4d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B <-> -e B <_ -e A ) ) |