| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexuz3.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | eluzelre | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 3 | 2 1 | eleq2s | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℝ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  →  𝑗  ∈  ℝ ) | 
						
							| 5 |  | eluzelz | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 6 | 5 1 | eleq2s | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ ) | 
						
							| 7 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ℤ ) | 
						
							| 8 | 7 1 | eleq2s | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℤ ) | 
						
							| 9 |  | eluz | ⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  ↔  𝑗  ≤  𝑘 ) ) | 
						
							| 10 | 6 8 9 | syl2an | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  ↔  𝑗  ≤  𝑘 ) ) | 
						
							| 11 | 10 | biimprd | ⊢ ( ( 𝑗  ∈  𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝑗  ≤  𝑘  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 12 | 11 | expimpd | ⊢ ( 𝑗  ∈  𝑍  →  ( ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ) ) | 
						
							| 13 | 12 | imim1d | ⊢ ( 𝑗  ∈  𝑍  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  𝜑 )  →  ( ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 )  →  𝜑 ) ) ) | 
						
							| 14 | 13 | exp4a | ⊢ ( 𝑗  ∈  𝑍  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑗 )  →  𝜑 )  →  ( 𝑘  ∈  𝑍  →  ( 𝑗  ≤  𝑘  →  𝜑 ) ) ) ) | 
						
							| 15 | 14 | ralimdv2 | ⊢ ( 𝑗  ∈  𝑍  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  →  ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  →  ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) ) | 
						
							| 17 | 4 16 | jca | ⊢ ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 )  →  ( 𝑗  ∈  ℝ  ∧  ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) ) ) | 
						
							| 18 | 17 | reximi2 | ⊢ ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  →  ∃ 𝑗  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑀  ∈  ℤ ) | 
						
							| 20 |  | flcl | ⊢ ( 𝑗  ∈  ℝ  →  ( ⌊ ‘ 𝑗 )  ∈  ℤ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ⌊ ‘ 𝑗 )  ∈  ℤ ) | 
						
							| 22 | 21 | peano2zd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℤ ) | 
						
							| 23 | 22 19 | ifcld | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℤ ) | 
						
							| 24 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 25 |  | reflcl | ⊢ ( 𝑗  ∈  ℝ  →  ( ⌊ ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 26 |  | peano2re | ⊢ ( ( ⌊ ‘ 𝑗 )  ∈  ℝ  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝑗  ∈  ℝ  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ ) | 
						
							| 28 |  | max1 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ )  →  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) | 
						
							| 29 | 24 27 28 | syl2an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) | 
						
							| 30 |  | eluz2 | ⊢ ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℤ  ∧  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) ) | 
						
							| 31 | 19 23 29 30 | syl3anbrc | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 32 | 31 1 | eleqtrrdi | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  𝑍 ) | 
						
							| 33 |  | impexp | ⊢ ( ( ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 )  →  𝜑 )  ↔  ( 𝑘  ∈  𝑍  →  ( 𝑗  ≤  𝑘  →  𝜑 ) ) ) | 
						
							| 34 |  | uzss | ⊢ ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 35 | 31 34 | syl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 36 | 35 1 | sseqtrrdi | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  ⊆  𝑍 ) | 
						
							| 37 | 36 | sselda | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 38 |  | simplr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 39 | 23 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℤ ) | 
						
							| 40 | 39 | zred | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℝ ) | 
						
							| 41 |  | eluzelre | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 43 |  | simpr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑗  ∈  ℝ ) | 
						
							| 44 | 27 | adantl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ ) | 
						
							| 45 | 23 | zred | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  ℝ ) | 
						
							| 46 |  | fllep1 | ⊢ ( 𝑗  ∈  ℝ  →  𝑗  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑗  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ) | 
						
							| 48 |  | max2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( ⌊ ‘ 𝑗 )  +  1 )  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) | 
						
							| 49 | 24 27 48 | syl2an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑗 )  +  1 )  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) | 
						
							| 50 | 43 44 45 47 49 | letrd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  𝑗  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑗  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) | 
						
							| 52 |  | eluzle | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ≤  𝑘 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ≤  𝑘 ) | 
						
							| 54 | 38 40 42 51 53 | letrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  𝑗  ≤  𝑘 ) | 
						
							| 55 | 37 54 | jca | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  ∧  𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) )  →  ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 ) ) | 
						
							| 56 | 55 | ex | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 ) ) ) | 
						
							| 57 | 56 | imim1d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( ( 𝑘  ∈  𝑍  ∧  𝑗  ≤  𝑘 )  →  𝜑 )  →  ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  𝜑 ) ) ) | 
						
							| 58 | 33 57 | biimtrrid | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ( 𝑘  ∈  𝑍  →  ( 𝑗  ≤  𝑘  →  𝜑 ) )  →  ( 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) )  →  𝜑 ) ) ) | 
						
							| 59 | 58 | ralimdv2 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) 𝜑 ) ) | 
						
							| 60 |  | fveq2 | ⊢ ( 𝑚  =  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  →  ( ℤ≥ ‘ 𝑚 )  =  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) ) | 
						
							| 61 | 60 | raleqdv | ⊢ ( 𝑚  =  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) 𝜑 ) ) | 
						
							| 62 | 61 | rspcev | ⊢ ( ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 )  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  ( ( ⌊ ‘ 𝑗 )  +  1 ) ,  𝑀 ) ) 𝜑 )  →  ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑 ) | 
						
							| 63 | 32 59 62 | syl6an | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℝ )  →  ( ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 )  →  ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑 ) ) | 
						
							| 64 | 63 | rexlimdva | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 )  →  ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑 ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑚  =  𝑗  →  ( ℤ≥ ‘ 𝑚 )  =  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 66 | 65 | raleqdv | ⊢ ( 𝑚  =  𝑗  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | 
						
							| 67 | 66 | cbvrexvw | ⊢ ( ∃ 𝑚  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑚 ) 𝜑  ↔  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 ) | 
						
							| 68 | 64 67 | imbitrdi | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 )  →  ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) | 
						
							| 69 | 18 68 | impbid2 | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) 𝜑  ↔  ∃ 𝑗  ∈  ℝ ∀ 𝑘  ∈  𝑍 ( 𝑗  ≤  𝑘  →  𝜑 ) ) ) |