| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexuz3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℝ ) |
| 3 |
2 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → 𝑗 ∈ ℝ ) |
| 5 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
| 6 |
5 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 7 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
| 8 |
7 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 9 |
|
eluz |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ 𝑘 ) ) |
| 10 |
6 8 9
|
syl2an |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ 𝑘 ) ) |
| 11 |
10
|
biimprd |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑗 ≤ 𝑘 → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 12 |
11
|
expimpd |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 13 |
12
|
imim1d |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝜑 ) → ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) → 𝜑 ) ) ) |
| 14 |
13
|
exp4a |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝜑 ) → ( 𝑘 ∈ 𝑍 → ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) ) |
| 15 |
14
|
ralimdv2 |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| 16 |
15
|
imp |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) |
| 17 |
4 16
|
jca |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ( 𝑗 ∈ ℝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| 18 |
17
|
reximi2 |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) |
| 19 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑀 ∈ ℤ ) |
| 20 |
|
flcl |
⊢ ( 𝑗 ∈ ℝ → ( ⌊ ‘ 𝑗 ) ∈ ℤ ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ⌊ ‘ 𝑗 ) ∈ ℤ ) |
| 22 |
21
|
peano2zd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℤ ) |
| 23 |
22 19
|
ifcld |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 24 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 25 |
|
reflcl |
⊢ ( 𝑗 ∈ ℝ → ( ⌊ ‘ 𝑗 ) ∈ ℝ ) |
| 26 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑗 ) ∈ ℝ → ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) |
| 27 |
25 26
|
syl |
⊢ ( 𝑗 ∈ ℝ → ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) |
| 28 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 29 |
24 27 28
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 30 |
|
eluz2 |
⊢ ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℤ ∧ 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) |
| 31 |
19 23 29 30
|
syl3anbrc |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 32 |
31 1
|
eleqtrrdi |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ 𝑍 ) |
| 33 |
|
impexp |
⊢ ( ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) → 𝜑 ) ↔ ( 𝑘 ∈ 𝑍 → ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |
| 34 |
|
uzss |
⊢ ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 35 |
31 34
|
syl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 36 |
35 1
|
sseqtrrdi |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ⊆ 𝑍 ) |
| 37 |
36
|
sselda |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 38 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑗 ∈ ℝ ) |
| 39 |
23
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 40 |
39
|
zred |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℝ ) |
| 41 |
|
eluzelre |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → 𝑘 ∈ ℝ ) |
| 42 |
41
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑘 ∈ ℝ ) |
| 43 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑗 ∈ ℝ ) |
| 44 |
27
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) |
| 45 |
23
|
zred |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ ℝ ) |
| 46 |
|
fllep1 |
⊢ ( 𝑗 ∈ ℝ → 𝑗 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑗 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) ) |
| 48 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑗 ) + 1 ) ∈ ℝ ) → ( ( ⌊ ‘ 𝑗 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 49 |
24 27 48
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( ⌊ ‘ 𝑗 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 50 |
43 44 45 47 49
|
letrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → 𝑗 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑗 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) |
| 52 |
|
eluzle |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ≤ 𝑘 ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ≤ 𝑘 ) |
| 54 |
38 40 42 51 53
|
letrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → 𝑗 ≤ 𝑘 ) |
| 55 |
37 54
|
jca |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) → ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) ) |
| 56 |
55
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) ) ) |
| 57 |
56
|
imim1d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ≤ 𝑘 ) → 𝜑 ) → ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → 𝜑 ) ) ) |
| 58 |
33 57
|
biimtrrid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ( 𝑘 ∈ 𝑍 → ( 𝑗 ≤ 𝑘 → 𝜑 ) ) → ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) → 𝜑 ) ) ) |
| 59 |
58
|
ralimdv2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) 𝜑 ) ) |
| 60 |
|
fveq2 |
⊢ ( 𝑚 = if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) ) |
| 61 |
60
|
raleqdv |
⊢ ( 𝑚 = if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) 𝜑 ) ) |
| 62 |
61
|
rspcev |
⊢ ( ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑗 ) + 1 ) , ( ( ⌊ ‘ 𝑗 ) + 1 ) , 𝑀 ) ) 𝜑 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ) |
| 63 |
32 59 62
|
syl6an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ) ) |
| 64 |
63
|
rexlimdva |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑚 = 𝑗 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑗 ) ) |
| 66 |
65
|
raleqdv |
⊢ ( 𝑚 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 67 |
66
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
| 68 |
64 67
|
imbitrdi |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
| 69 |
18 68
|
impbid2 |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝑗 ≤ 𝑘 → 𝜑 ) ) ) |