Step |
Hyp |
Ref |
Expression |
1 |
|
limsupub2.1 |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
limsupub2.2 |
⊢ Ⅎ 𝑗 𝐹 |
3 |
|
limsupub2.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
limsupub2.4 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
5 |
|
limsupub2.5 |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≠ +∞ ) |
6 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ∈ ℝ |
7 |
1 6
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑥 ∈ ℝ ) |
8 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ∈ ℝ |
9 |
7 8
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) |
10 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
11 |
10
|
ad5ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
12 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
13 |
12
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → 𝑥 ∈ ℝ* ) |
14 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
15 |
14
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → +∞ ∈ ℝ* ) |
16 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
17 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
18 |
17
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → 𝑥 < +∞ ) |
19 |
11 13 15 16 18
|
xrlelttrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ( 𝐹 ‘ 𝑗 ) < +∞ ) |
20 |
19
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 → ( 𝐹 ‘ 𝑗 ) < +∞ ) ) |
21 |
20
|
imim2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < +∞ ) ) ) |
22 |
9 21
|
ralimdaa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < +∞ ) ) ) |
23 |
22
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < +∞ ) ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < +∞ ) ) |
25 |
1 2 3 4 5
|
limsupub |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
26 |
24 25
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < +∞ ) ) |