| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limsupub2.1 | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 2 |  | limsupub2.2 | ⊢ Ⅎ 𝑗 𝐹 | 
						
							| 3 |  | limsupub2.3 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 4 |  | limsupub2.4 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ* ) | 
						
							| 5 |  | limsupub2.5 | ⊢ ( 𝜑  →  ( lim sup ‘ 𝐹 )  ≠  +∞ ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑗 𝑥  ∈  ℝ | 
						
							| 7 | 1 6 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑥  ∈  ℝ ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑗 𝑘  ∈  ℝ | 
						
							| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ ) | 
						
							| 10 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 11 | 10 | ad5ant14 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ )  ∧  𝑗  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 12 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 13 | 12 | ad4antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ )  ∧  𝑗  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  →  𝑥  ∈  ℝ* ) | 
						
							| 14 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 15 | 14 | a1i | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ )  ∧  𝑗  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  →  +∞  ∈  ℝ* ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ )  ∧  𝑗  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  →  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 17 |  | ltpnf | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  <  +∞ ) | 
						
							| 18 | 17 | ad4antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ )  ∧  𝑗  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  →  𝑥  <  +∞ ) | 
						
							| 19 | 11 13 15 16 18 | xrlelttrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ )  ∧  𝑗  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) | 
						
							| 20 | 19 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ )  ∧  𝑗  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑗 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) ) | 
						
							| 21 | 20 | imim2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ )  ∧  𝑗  ∈  𝐴 )  →  ( ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  →  ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) ) ) | 
						
							| 22 | 9 21 | ralimdaa | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑘  ∈  ℝ )  →  ( ∀ 𝑗  ∈  𝐴 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  →  ∀ 𝑗  ∈  𝐴 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) ) ) | 
						
							| 23 | 22 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  𝐴 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  𝐴 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  𝐴 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  →  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  𝐴 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) ) | 
						
							| 25 | 1 2 3 4 5 | limsupub | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  𝐴 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) ) | 
						
							| 26 | 24 25 | r19.29a | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ℝ ∀ 𝑗  ∈  𝐴 ( 𝑘  ≤  𝑗  →  ( 𝐹 ‘ 𝑗 )  <  +∞ ) ) |