Metamath Proof Explorer


Theorem climliminflimsup4

Description: A sequence of real numbers converges if and only if its superior limit is real and equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminflimsup4.1
|- ( ph -> M e. ZZ )
climliminflimsup4.2
|- Z = ( ZZ>= ` M )
climliminflimsup4.3
|- ( ph -> F : Z --> RR )
Assertion climliminflimsup4
|- ( ph -> ( F e. dom ~~> <-> ( ( limsup ` F ) e. RR /\ ( liminf ` F ) = ( limsup ` F ) ) ) )

Proof

Step Hyp Ref Expression
1 climliminflimsup4.1
 |-  ( ph -> M e. ZZ )
2 climliminflimsup4.2
 |-  Z = ( ZZ>= ` M )
3 climliminflimsup4.3
 |-  ( ph -> F : Z --> RR )
4 1 2 3 climliminflimsup2
 |-  ( ph -> ( F e. dom ~~> <-> ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) )
5 3 frexr
 |-  ( ph -> F : Z --> RR* )
6 1 2 5 liminfgelimsupuz
 |-  ( ph -> ( ( limsup ` F ) <_ ( liminf ` F ) <-> ( liminf ` F ) = ( limsup ` F ) ) )
7 6 anbi2d
 |-  ( ph -> ( ( ( limsup ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) <-> ( ( limsup ` F ) e. RR /\ ( liminf ` F ) = ( limsup ` F ) ) ) )
8 4 7 bitrd
 |-  ( ph -> ( F e. dom ~~> <-> ( ( limsup ` F ) e. RR /\ ( liminf ` F ) = ( limsup ` F ) ) ) )