Step |
Hyp |
Ref |
Expression |
1 |
|
climliminflimsup.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
climliminflimsup.2 |
|- Z = ( ZZ>= ` M ) |
3 |
|
climliminflimsup.3 |
|- ( ph -> F : Z --> RR ) |
4 |
1
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) |
5 |
1 2 3
|
climliminf |
|- ( ph -> ( F e. dom ~~> <-> F ~~> ( liminf ` F ) ) ) |
6 |
5
|
biimpd |
|- ( ph -> ( F e. dom ~~> -> F ~~> ( liminf ` F ) ) ) |
7 |
6
|
imp |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( liminf ` F ) ) |
8 |
3
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> F : Z --> RR ) |
9 |
8
|
ffvelrnda |
|- ( ( ( ph /\ F e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. RR ) |
10 |
2 4 7 9
|
climrecl |
|- ( ( ph /\ F e. dom ~~> ) -> ( liminf ` F ) e. RR ) |
11 |
|
simpr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) |
12 |
11
|
limsupcld |
|- ( ( ph /\ F e. dom ~~> ) -> ( limsup ` F ) e. RR* ) |
13 |
4 2 8 11
|
climliminflimsupd |
|- ( ( ph /\ F e. dom ~~> ) -> ( liminf ` F ) = ( limsup ` F ) ) |
14 |
13
|
eqcomd |
|- ( ( ph /\ F e. dom ~~> ) -> ( limsup ` F ) = ( liminf ` F ) ) |
15 |
12 14
|
xreqled |
|- ( ( ph /\ F e. dom ~~> ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
16 |
10 15
|
jca |
|- ( ( ph /\ F e. dom ~~> ) -> ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) |
17 |
1
|
adantr |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> M e. ZZ ) |
18 |
3
|
adantr |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> F : Z --> RR ) |
19 |
|
simprl |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( liminf ` F ) e. RR ) |
20 |
|
simprr |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> ( limsup ` F ) <_ ( liminf ` F ) ) |
21 |
17 2 18 19 20
|
liminflimsupclim |
|- ( ( ph /\ ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) -> F e. dom ~~> ) |
22 |
16 21
|
impbida |
|- ( ph -> ( F e. dom ~~> <-> ( ( liminf ` F ) e. RR /\ ( limsup ` F ) <_ ( liminf ` F ) ) ) ) |