| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climliminflimsupd.1 |
|- ( ph -> M e. ZZ ) |
| 2 |
|
climliminflimsupd.2 |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
climliminflimsupd.3 |
|- ( ph -> F : Z --> RR ) |
| 4 |
|
climliminflimsupd.4 |
|- ( ph -> F e. dom ~~> ) |
| 5 |
3
|
feqmptd |
|- ( ph -> F = ( k e. Z |-> ( F ` k ) ) ) |
| 6 |
5
|
fveq2d |
|- ( ph -> ( liminf ` F ) = ( liminf ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 7 |
2
|
fvexi |
|- Z e. _V |
| 8 |
7
|
mptex |
|- ( k e. Z |-> ( F ` k ) ) e. _V |
| 9 |
|
liminfcl |
|- ( ( k e. Z |-> ( F ` k ) ) e. _V -> ( liminf ` ( k e. Z |-> ( F ` k ) ) ) e. RR* ) |
| 10 |
8 9
|
ax-mp |
|- ( liminf ` ( k e. Z |-> ( F ` k ) ) ) e. RR* |
| 11 |
10
|
a1i |
|- ( ph -> ( liminf ` ( k e. Z |-> ( F ` k ) ) ) e. RR* ) |
| 12 |
6 11
|
eqeltrd |
|- ( ph -> ( liminf ` F ) e. RR* ) |
| 13 |
|
nfv |
|- F/ k ph |
| 14 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 15 |
14
|
renegcld |
|- ( ( ph /\ k e. Z ) -> -u ( F ` k ) e. RR ) |
| 16 |
13 1 2 15
|
limsupvaluz4 |
|- ( ph -> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) = -e ( liminf ` ( k e. Z |-> -u -u ( F ` k ) ) ) ) |
| 17 |
|
climrel |
|- Rel ~~> |
| 18 |
17
|
a1i |
|- ( ph -> Rel ~~> ) |
| 19 |
|
nfcv |
|- F/_ k F |
| 20 |
1 2 3
|
climlimsup |
|- ( ph -> ( F e. dom ~~> <-> F ~~> ( limsup ` F ) ) ) |
| 21 |
4 20
|
mpbid |
|- ( ph -> F ~~> ( limsup ` F ) ) |
| 22 |
14
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 23 |
13 19 2 1 21 22
|
climneg |
|- ( ph -> ( k e. Z |-> -u ( F ` k ) ) ~~> -u ( limsup ` F ) ) |
| 24 |
|
releldm |
|- ( ( Rel ~~> /\ ( k e. Z |-> -u ( F ` k ) ) ~~> -u ( limsup ` F ) ) -> ( k e. Z |-> -u ( F ` k ) ) e. dom ~~> ) |
| 25 |
18 23 24
|
syl2anc |
|- ( ph -> ( k e. Z |-> -u ( F ` k ) ) e. dom ~~> ) |
| 26 |
15
|
fmpttd |
|- ( ph -> ( k e. Z |-> -u ( F ` k ) ) : Z --> RR ) |
| 27 |
1 2 26
|
climlimsup |
|- ( ph -> ( ( k e. Z |-> -u ( F ` k ) ) e. dom ~~> <-> ( k e. Z |-> -u ( F ` k ) ) ~~> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) ) ) |
| 28 |
25 27
|
mpbid |
|- ( ph -> ( k e. Z |-> -u ( F ` k ) ) ~~> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) ) |
| 29 |
|
climuni |
|- ( ( ( k e. Z |-> -u ( F ` k ) ) ~~> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) /\ ( k e. Z |-> -u ( F ` k ) ) ~~> -u ( limsup ` F ) ) -> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) = -u ( limsup ` F ) ) |
| 30 |
28 23 29
|
syl2anc |
|- ( ph -> ( limsup ` ( k e. Z |-> -u ( F ` k ) ) ) = -u ( limsup ` F ) ) |
| 31 |
22
|
negnegd |
|- ( ( ph /\ k e. Z ) -> -u -u ( F ` k ) = ( F ` k ) ) |
| 32 |
31
|
mpteq2dva |
|- ( ph -> ( k e. Z |-> -u -u ( F ` k ) ) = ( k e. Z |-> ( F ` k ) ) ) |
| 33 |
32 5
|
eqtr4d |
|- ( ph -> ( k e. Z |-> -u -u ( F ` k ) ) = F ) |
| 34 |
33
|
fveq2d |
|- ( ph -> ( liminf ` ( k e. Z |-> -u -u ( F ` k ) ) ) = ( liminf ` F ) ) |
| 35 |
34
|
xnegeqd |
|- ( ph -> -e ( liminf ` ( k e. Z |-> -u -u ( F ` k ) ) ) = -e ( liminf ` F ) ) |
| 36 |
16 30 35
|
3eqtr3d |
|- ( ph -> -u ( limsup ` F ) = -e ( liminf ` F ) ) |
| 37 |
2 1 21 14
|
climrecl |
|- ( ph -> ( limsup ` F ) e. RR ) |
| 38 |
37
|
renegcld |
|- ( ph -> -u ( limsup ` F ) e. RR ) |
| 39 |
36 38
|
eqeltrrd |
|- ( ph -> -e ( liminf ` F ) e. RR ) |
| 40 |
|
xnegrecl2 |
|- ( ( ( liminf ` F ) e. RR* /\ -e ( liminf ` F ) e. RR ) -> ( liminf ` F ) e. RR ) |
| 41 |
12 39 40
|
syl2anc |
|- ( ph -> ( liminf ` F ) e. RR ) |
| 42 |
41
|
recnd |
|- ( ph -> ( liminf ` F ) e. CC ) |
| 43 |
37
|
recnd |
|- ( ph -> ( limsup ` F ) e. CC ) |
| 44 |
41
|
rexnegd |
|- ( ph -> -e ( liminf ` F ) = -u ( liminf ` F ) ) |
| 45 |
36 44
|
eqtr2d |
|- ( ph -> -u ( liminf ` F ) = -u ( limsup ` F ) ) |
| 46 |
42 43 45
|
neg11d |
|- ( ph -> ( liminf ` F ) = ( limsup ` F ) ) |