Metamath Proof Explorer


Theorem climliminflimsupd

Description: If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminflimsupd.1 φ M
climliminflimsupd.2 Z = M
climliminflimsupd.3 φ F : Z
climliminflimsupd.4 φ F dom
Assertion climliminflimsupd φ lim inf F = lim sup F

Proof

Step Hyp Ref Expression
1 climliminflimsupd.1 φ M
2 climliminflimsupd.2 Z = M
3 climliminflimsupd.3 φ F : Z
4 climliminflimsupd.4 φ F dom
5 3 feqmptd φ F = k Z F k
6 5 fveq2d φ lim inf F = lim inf k Z F k
7 2 fvexi Z V
8 7 mptex k Z F k V
9 liminfcl k Z F k V lim inf k Z F k *
10 8 9 ax-mp lim inf k Z F k *
11 10 a1i φ lim inf k Z F k *
12 6 11 eqeltrd φ lim inf F *
13 nfv k φ
14 3 ffvelrnda φ k Z F k
15 14 renegcld φ k Z F k
16 13 1 2 15 limsupvaluz4 φ lim sup k Z F k = lim inf k Z F k
17 climrel Rel
18 17 a1i φ Rel
19 nfcv _ k F
20 1 2 3 climlimsup φ F dom F lim sup F
21 4 20 mpbid φ F lim sup F
22 14 recnd φ k Z F k
23 13 19 2 1 21 22 climneg φ k Z F k lim sup F
24 releldm Rel k Z F k lim sup F k Z F k dom
25 18 23 24 syl2anc φ k Z F k dom
26 15 fmpttd φ k Z F k : Z
27 1 2 26 climlimsup φ k Z F k dom k Z F k lim sup k Z F k
28 25 27 mpbid φ k Z F k lim sup k Z F k
29 climuni k Z F k lim sup k Z F k k Z F k lim sup F lim sup k Z F k = lim sup F
30 28 23 29 syl2anc φ lim sup k Z F k = lim sup F
31 22 negnegd φ k Z F k = F k
32 31 mpteq2dva φ k Z F k = k Z F k
33 32 5 eqtr4d φ k Z F k = F
34 33 fveq2d φ lim inf k Z F k = lim inf F
35 34 xnegeqd φ lim inf k Z F k = lim inf F
36 16 30 35 3eqtr3d φ lim sup F = lim inf F
37 2 1 21 14 climrecl φ lim sup F
38 37 renegcld φ lim sup F
39 36 38 eqeltrrd φ lim inf F
40 xnegrecl2 lim inf F * lim inf F lim inf F
41 12 39 40 syl2anc φ lim inf F
42 41 recnd φ lim inf F
43 37 recnd φ lim sup F
44 41 rexnegd φ lim inf F = lim inf F
45 36 44 eqtr2d φ lim inf F = lim sup F
46 42 43 45 neg11d φ lim inf F = lim sup F