| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfreuzlem.1 |
|
| 2 |
|
liminfreuzlem.2 |
|
| 3 |
|
liminfreuzlem.3 |
|
| 4 |
|
liminfreuzlem.4 |
|
| 5 |
|
nfv |
|
| 6 |
5 1 2 3 4
|
liminfvaluz4 |
|
| 7 |
6
|
eleq1d |
|
| 8 |
3
|
fvexi |
|
| 9 |
8
|
mptex |
|
| 10 |
|
limsupcl |
|
| 11 |
9 10
|
ax-mp |
|
| 12 |
11
|
a1i |
|
| 13 |
12
|
xnegred |
|
| 14 |
7 13
|
bitr4d |
|
| 15 |
4
|
ffvelcdmda |
|
| 16 |
15
|
renegcld |
|
| 17 |
5 2 3 16
|
limsupreuzmpt |
|
| 18 |
|
renegcl |
|
| 19 |
18
|
ad2antlr |
|
| 20 |
|
simpllr |
|
| 21 |
4
|
ad2antrr |
|
| 22 |
3
|
uztrn2 |
|
| 23 |
22
|
adantll |
|
| 24 |
21 23
|
ffvelcdmd |
|
| 25 |
24
|
adantllr |
|
| 26 |
20 25
|
leneg2d |
|
| 27 |
26
|
rexbidva |
|
| 28 |
27
|
ralbidva |
|
| 29 |
28
|
biimpd |
|
| 30 |
29
|
imp |
|
| 31 |
|
breq2 |
|
| 32 |
31
|
rexbidv |
|
| 33 |
32
|
ralbidv |
|
| 34 |
33
|
rspcev |
|
| 35 |
19 30 34
|
syl2anc |
|
| 36 |
35
|
rexlimdva2 |
|
| 37 |
|
renegcl |
|
| 38 |
37
|
ad2antlr |
|
| 39 |
24
|
adantllr |
|
| 40 |
|
simpllr |
|
| 41 |
39 40
|
lenegd |
|
| 42 |
41
|
rexbidva |
|
| 43 |
42
|
ralbidva |
|
| 44 |
43
|
biimpd |
|
| 45 |
44
|
imp |
|
| 46 |
|
breq1 |
|
| 47 |
46
|
rexbidv |
|
| 48 |
47
|
ralbidv |
|
| 49 |
48
|
rspcev |
|
| 50 |
38 45 49
|
syl2anc |
|
| 51 |
50
|
rexlimdva2 |
|
| 52 |
36 51
|
impbid |
|
| 53 |
18
|
ad2antlr |
|
| 54 |
15
|
adantlr |
|
| 55 |
|
simplr |
|
| 56 |
54 55
|
leneg3d |
|
| 57 |
56
|
ralbidva |
|
| 58 |
57
|
biimpd |
|
| 59 |
58
|
imp |
|
| 60 |
|
breq1 |
|
| 61 |
60
|
ralbidv |
|
| 62 |
61
|
rspcev |
|
| 63 |
53 59 62
|
syl2anc |
|
| 64 |
63
|
rexlimdva2 |
|
| 65 |
37
|
ad2antlr |
|
| 66 |
|
simplr |
|
| 67 |
15
|
adantlr |
|
| 68 |
66 67
|
lenegd |
|
| 69 |
68
|
ralbidva |
|
| 70 |
69
|
biimpd |
|
| 71 |
70
|
imp |
|
| 72 |
|
brralrspcev |
|
| 73 |
65 71 72
|
syl2anc |
|
| 74 |
73
|
rexlimdva2 |
|
| 75 |
64 74
|
impbid |
|
| 76 |
52 75
|
anbi12d |
|
| 77 |
17 76
|
bitrd |
|
| 78 |
14 77
|
bitrd |
|