Step |
Hyp |
Ref |
Expression |
1 |
|
liminfreuzlem.1 |
|
2 |
|
liminfreuzlem.2 |
|
3 |
|
liminfreuzlem.3 |
|
4 |
|
liminfreuzlem.4 |
|
5 |
|
nfv |
|
6 |
5 1 2 3 4
|
liminfvaluz4 |
|
7 |
6
|
eleq1d |
|
8 |
3
|
fvexi |
|
9 |
8
|
mptex |
|
10 |
|
limsupcl |
|
11 |
9 10
|
ax-mp |
|
12 |
11
|
a1i |
|
13 |
12
|
xnegred |
|
14 |
7 13
|
bitr4d |
|
15 |
4
|
ffvelrnda |
|
16 |
15
|
renegcld |
|
17 |
5 2 3 16
|
limsupreuzmpt |
|
18 |
|
renegcl |
|
19 |
18
|
ad2antlr |
|
20 |
|
simpllr |
|
21 |
4
|
ad2antrr |
|
22 |
3
|
uztrn2 |
|
23 |
22
|
adantll |
|
24 |
21 23
|
ffvelrnd |
|
25 |
24
|
adantllr |
|
26 |
20 25
|
leneg2d |
|
27 |
26
|
rexbidva |
|
28 |
27
|
ralbidva |
|
29 |
28
|
biimpd |
|
30 |
29
|
imp |
|
31 |
|
breq2 |
|
32 |
31
|
rexbidv |
|
33 |
32
|
ralbidv |
|
34 |
33
|
rspcev |
|
35 |
19 30 34
|
syl2anc |
|
36 |
35
|
rexlimdva2 |
|
37 |
|
renegcl |
|
38 |
37
|
ad2antlr |
|
39 |
24
|
adantllr |
|
40 |
|
simpllr |
|
41 |
39 40
|
lenegd |
|
42 |
41
|
rexbidva |
|
43 |
42
|
ralbidva |
|
44 |
43
|
biimpd |
|
45 |
44
|
imp |
|
46 |
|
breq1 |
|
47 |
46
|
rexbidv |
|
48 |
47
|
ralbidv |
|
49 |
48
|
rspcev |
|
50 |
38 45 49
|
syl2anc |
|
51 |
50
|
rexlimdva2 |
|
52 |
36 51
|
impbid |
|
53 |
18
|
ad2antlr |
|
54 |
15
|
adantlr |
|
55 |
|
simplr |
|
56 |
54 55
|
leneg3d |
|
57 |
56
|
ralbidva |
|
58 |
57
|
biimpd |
|
59 |
58
|
imp |
|
60 |
|
breq1 |
|
61 |
60
|
ralbidv |
|
62 |
61
|
rspcev |
|
63 |
53 59 62
|
syl2anc |
|
64 |
63
|
rexlimdva2 |
|
65 |
37
|
ad2antlr |
|
66 |
|
simplr |
|
67 |
15
|
adantlr |
|
68 |
66 67
|
lenegd |
|
69 |
68
|
ralbidva |
|
70 |
69
|
biimpd |
|
71 |
70
|
imp |
|
72 |
|
brralrspcev |
|
73 |
65 71 72
|
syl2anc |
|
74 |
73
|
rexlimdva2 |
|
75 |
64 74
|
impbid |
|
76 |
52 75
|
anbi12d |
|
77 |
17 76
|
bitrd |
|
78 |
14 77
|
bitrd |
|