Metamath Proof Explorer


Theorem limsupvaluz4

Description: Alternate definition of liminf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupvaluz4.k k φ
limsupvaluz4.m φ M
limsupvaluz4.z Z = M
limsupvaluz4.b φ k Z B
Assertion limsupvaluz4 φ lim sup k Z B = lim inf k Z B

Proof

Step Hyp Ref Expression
1 limsupvaluz4.k k φ
2 limsupvaluz4.m φ M
3 limsupvaluz4.z Z = M
4 limsupvaluz4.b φ k Z B
5 4 rexrd φ k Z B *
6 1 2 3 5 limsupvaluz3 φ lim sup k Z B = lim inf k Z B
7 4 rexnegd φ k Z B = B
8 1 7 mpteq2da φ k Z B = k Z B
9 8 fveq2d φ lim inf k Z B = lim inf k Z B
10 9 xnegeqd φ lim inf k Z B = lim inf k Z B
11 6 10 eqtrd φ lim sup k Z B = lim inf k Z B