Step |
Hyp |
Ref |
Expression |
1 |
|
limsupvaluz4.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
limsupvaluz4.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
limsupvaluz4.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
limsupvaluz4.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
5 |
4
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ* ) |
6 |
1 2 3 5
|
limsupvaluz3 |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) = -𝑒 ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ -𝑒 𝐵 ) ) ) |
7 |
4
|
rexnegd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → -𝑒 𝐵 = - 𝐵 ) |
8 |
1 7
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ -𝑒 𝐵 ) = ( 𝑘 ∈ 𝑍 ↦ - 𝐵 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ -𝑒 𝐵 ) ) = ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ - 𝐵 ) ) ) |
10 |
9
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ -𝑒 𝐵 ) ) = -𝑒 ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ - 𝐵 ) ) ) |
11 |
6 10
|
eqtrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) = -𝑒 ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ - 𝐵 ) ) ) |