Step |
Hyp |
Ref |
Expression |
1 |
|
climliminflimsup2.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
climliminflimsup2.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
climliminflimsup2.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
1 2 3
|
climliminflimsup |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → 𝑀 ∈ ℤ ) |
6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
9 |
5 2 6 7 8
|
liminflimsupclim |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → 𝐹 ∈ dom ⇝ ) |
10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
13 |
10 2 11 12
|
climliminflimsupd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
14 |
13
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
15 |
9 14
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
16 |
15 7
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
17 |
16 8
|
jca |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → 𝑀 ∈ ℤ ) |
20 |
3
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
22 |
19 2 21
|
liminfgelimsupuz |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |
23 |
18 22
|
mpbid |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
24 |
23
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
25 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
26 |
24 25
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
28 |
26 27
|
jca |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) |
29 |
17 28
|
impbida |
⊢ ( 𝜑 → ( ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ↔ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) ) |
30 |
4 29
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) ) |