| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climliminflimsup2.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 2 |
|
climliminflimsup2.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
climliminflimsup2.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
| 4 |
1 2 3
|
climliminflimsup |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) ) |
| 5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → 𝑀 ∈ ℤ ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
| 8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
| 9 |
5 2 6 7 8
|
liminflimsupclim |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → 𝐹 ∈ dom ⇝ ) |
| 10 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
| 13 |
10 2 11 12
|
climliminflimsupd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
| 14 |
13
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
| 15 |
9 14
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
| 16 |
15 7
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 17 |
16 8
|
jca |
⊢ ( ( 𝜑 ∧ ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
| 19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → 𝑀 ∈ ℤ ) |
| 20 |
3
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 22 |
19 2 21
|
liminfgelimsupuz |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |
| 23 |
18 22
|
mpbid |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
| 24 |
23
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
| 25 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 26 |
24 25
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim inf ‘ 𝐹 ) ∈ ℝ ) |
| 27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
| 28 |
26 27
|
jca |
⊢ ( ( 𝜑 ∧ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) → ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) |
| 29 |
17 28
|
impbida |
⊢ ( 𝜑 → ( ( ( lim inf ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ↔ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) ) |
| 30 |
4 29
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ dom ⇝ ↔ ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) ) ) |